A Ratiometric Fluorescent Conjugated Oligomer for Amyloid β Recognition, Aggregation Inhibition, and Detoxification
Ziqi Zhang
Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119 P. R. China
Search for more papers by this authorQiong Yuan
Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119 P. R. China
Search for more papers by this authorMeiqi Li
Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119 P. R. China
Search for more papers by this authorBenkai Bao
Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119 P. R. China
Search for more papers by this authorCorresponding Author
Yanli Tang
Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119 P. R. China
E-mail: [email protected]
Search for more papers by this authorZiqi Zhang
Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119 P. R. China
Search for more papers by this authorQiong Yuan
Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119 P. R. China
Search for more papers by this authorMeiqi Li
Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119 P. R. China
Search for more papers by this authorBenkai Bao
Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119 P. R. China
Search for more papers by this authorCorresponding Author
Yanli Tang
Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119 P. R. China
E-mail: [email protected]
Search for more papers by this authorAbstract
The sensitive recognition and effective inhibition of toxic amyloid β protein (Aβ) aggregates play a critical role in early diagnosis and treatment of neurodegenerative diseases. In this work, a new conjugated oligo(fluorene-co-phenylene) (OFP) modified with 1,8-naphthalimide (NA) derivative OFP-NA-NO2 is designed and synthesized as a ratiometric fluorescence probe for sensing Aβ, inhibiting the assembly of Aβ, and detoxicating the cytotoxicity of Aβ aggregates. In the presence of Aβ, the active ester group on the side chain of OFP-NA-NO2 can covalently react with the amino group on Aβ, effectively inhibiting the formation of Aβ aggregates and degrading the preformed fibrils. In this case, the fluorescence intensity ratio of NA to OFP (INA/IOFP) increases greatly. The detection limit is calculated to be 89.9 nM, presenting the most sensitive ratiometric recognition of Aβ. Interestingly, OFP-NA-NO2 can dramatically recover the cell viability of PC-12 and restore the Aβ-clearing ability of microglia. Therefore, this ratiometric probe exhibits the targeted recognition of Aβ, effective inhibition of Aβ aggregates, and detox effect, which is potential for early diagnosis and treatment of neurodegenerative diseases.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
smll202104581-sup-0001-SuppMat.pdf1.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1T. Nakamura, S. A. Lipton, Apoptosis 2009, 14, 455.
- 2C. M. Dobson, Nature 2003, 426, 884.
- 3F. Chiti, C. M. Dobson, Annu. Rev. Biochem. 2006, 75, 333.
- 4M. C. Hsieh, C. Liang, A. K. Mehta, D. G. Lynn, M. A. Grover, J. Am. Chem. Soc. 2017, 139, 17007.
- 5M. Zaman, A. N. Khan, S. M. Z. Wahiduzzaman, R. H. Khan, Int. J. Biol. Macromol. 2019, 134, 1022.
- 6B. Mroczko, M. Groblewska, A. Litman-Zawadzka, J. Kornhuber, P. Lewczuk, J. Neural Transm. 2018, 125, 177.
- 7J. Hardy, D. J. Selkoe, Science 2002, 297, 353.
- 8S. Giorgetti, C. Greco, P. Tortora, F. A. Aprile, Int. J. Mol. Sci. 2018, 19, 2677.
- 9K. Gu, Y. Xu, H. Li, Z. Guo, S. Zhu, S. Zhu, P. Shi, T. D. James, H. Tian, W. H. Zhu, J. Am. Chem. Soc. 2016, 138, 5334.
- 10A. K. Mora, S. Murudkar, A. Alamelu, S. Chattopadhyay, S. Nath, J. Photochem. Photobiol., A 2019, 373, 20.
- 11S. Freire, F. Rodriguez-Prieto, M. C. Rios Rodriguez, J. C. Penedo, W. Al-Soufi, M. Novo, Chem. - Eur. J. 2015, 21, 3425.
- 12J. Y. Shao, S. H. Wu, J. Ma, Z. L. Gong, T. G. Sun, Y. Jin, R. Yang, B. Sun, Y. W. Zhong, Chem. Commun. 2020, 56, 2087.
- 13C. Li, L. Yang, Y. Han, X. Wang, Biosens. Bioelectron. 2019, 142, 111518.
- 14J. D. Zhang, J. Mei, X. L. Hu, X. P. He, H. Tian, Small 2016, 12, 6562.
- 15Y. Wang, Y. Zhang, H. Sha, X. Xiong, N. Jia, ACS Appl. Mater. Interfaces 2019, 11, 36299.
- 16B. I. Lee, Y. J. Chung, C. B. Park, Biomaterials 2019, 190–191, 121.
- 17M. Hotsumi, M. Tajiri, K. Makabe, H. Konno, Bioorg. Chem. 2020, 104, 104302.
- 18Q. Fan, Y. Liu, X. Wang, Z. Zhang, Y. Fu, L. Liu, P. Wang, H. Ma, H. Ma, N. P. Seeram, J. Zheng, F. Zhou, ACS Chem. Neurosci. 2020, 11, 638.
- 19B. Muthuraj, S. Layek, S. N. Balaji, V. Trivedi, P. K. Iyer, ACS Chem. Neurosci. 2015, 6, 1880.
- 20A. K. Mora, S. Murudkar, A. Alamelu, P. K. Singh, S. Chattopadhyay, S. Nath, Chem. - Eur. J. 2016, 22, 16505.
- 21D. Mrdenovic, P. Zarzycki, M. Majewska, I. S. Pieta, R. Nowakowski, W. Kutner, J. Lipkowski, P. Pieta, ACS Chem. Neurosci. 2021, 12, 531.
- 22Y. Ma, Z. Ye, C. Zhang, X. Wang, H. W. Li, M. S. Wong, H. B. Luo, L. Xiao, ACS Nano 2020, 14, 11341.
- 23H. Sun, J. Liu, S. Li, L. Zhou, J. Wang, L. Liu, F. Lv, Q. Gu, B. Hu, Y. Ma, S. Wang, Angew. Chem., Int. Ed. 2019, 58, 5988.
- 24S. Mondal, V. Kumar, S. R. Chowdhury, M. Shah, A. Gaur, S. Kumar, P. K. Iyer, ACS Appl. Bio Mater. 2019, 2, 5306.
- 25S. R. Chowdhury, M. Agarwal, N. Meher, B. Muthuraj, P. K. Iyer, ACS Appl. Mater. Interfaces 2016, 8, 13309.
- 26N. Xiong, Y. Zhao, X. Dong, J. Zheng, Y. Sun, Small 2017, 13, 1601666.
- 27Y. Heo, K. Kim, J. Kim, J. Jang, C. B. Park, ACS Appl. Mater. Interfaces 2020, 12, 23667.
- 28H. Jung, Y. J. Chung, R. Wilton, C. H. Lee, B. I. Lee, J. Lim, H. Lee, J. H. Choi, H. Kang, B. Lee, E. A. Rozhkova, C. B. Park, J. Lee, Adv. Funct. Mater. 2020, 30, 1910475.
- 29S. Mondal, S. R. Chowdhury, M. Shah, V. Kumar, S. Kumar, P. K. Iyer, ACS Appl. Bio Mater. 2019, 2, 2137.
- 30Y. J. Chung, B. I. Lee, C. B. Park, Nanoscale 2019, 11, 6297.
- 31Y. J. Chung, K. Kim, B. I. Lee, C. B. Park, Small 2017, 13, 1700983.
- 32Y. Liu, L. P. Xu, Q. Wang, B. Yang, X. Zhang, ACS Chem. Neurosci. 2018, 9, 817.
- 33H. Geng, H. Yuan, L. Qiu, D. Gao, Y. Cheng, C. Xing, J. Mater. Chem. B 2020, 8, 10126.
- 34Z. Ye, L. Wei, Y. Li, L. Xiao, Anal. Chem. 2019, 91, 8582.
- 35G. Son, S. H. Lee, D. Wang, C. B. Park, Small 2018, 14, 1801396.
- 36Y. Zhao, J. Cai, Z. Liu, Y. Li, C. Zheng, Y. Zheng, Q. Chen, H. Chen, F. Ma, Y. An, L. Xiao, C. Jiang, L. Shi, C. Kang, Y. Liu, Nano Lett. 2019, 19, 674.
- 37L. Niu, L. Liu, W. Xi, Q. Han, Q. Li, Y. Yu, Q. Huang, F. Qu, M. Xu, Y. Li, H. Du, R. Yang, J. Cramer, K. V. Gothelf, M. Dong, F. Besenbacher, Q. Zeng, C. Wang, G. Wei, Y. Yang, ACS Nano 2016, 10, 4143.
- 38Q. Feng, Z. Zhang, Q. Yuan, M. Yang, C. Zhang, Y. Tang, Sens. Actuators, B 2020, 312, 127981.
- 39Y. Q. Huang, L. J. Sun, R. Zhang, J. Hu, X. F. Liu, R. C. Jiang, Q. L. Fan, L. H. Wang, W. Huang, ACS Appl. Bio Mater. 2019, 2, 2421.
- 40F. A. Monge, P. Jagadesan, V. Bondu, P. L. Donabedian, L. Ista, E. Y. Chi, K. S. Schanze, D. G. Whitten, A. M. Kell, ACS Appl. Mater. Interfaces 2020, 12, 55688.
- 41R. Peng, Y. Luo, Q. Cui, J. Wang, L. Li, ACS Appl. Bio Mater. 2020, 3, 1305.
- 42H. Zhang, L. Guo, Y. Wang, L. Feng, Biomater. Sci. 2021, 9, 2137.
- 43T. Zhao, L. Li, S. Li, X. F. Jiang, C. Jiang, N. Zhou, N. Gao, Q. H. Xu, J. Mater. Chem. C 2019, 7, 14693.
- 44S. I. A. Cohen, R. Cukalevski, T. C. T. Michaels, A. Saric, M. Tornquist, M. Vendruscolo, C. M. Dobson, A. K. Buell, T. P. J. Knowles, S. Linse, Nat. Chem. 2018, 10, 523.
- 45P. Arosio, T. P. Knowles, S. Linse, Phys. Chem. Chem. Phys. 2015, 17, 7606.
- 46K. Knop, R. Hoogenboom, D. Fischer, U. S. Schubert, Angew. Chem., Int. Ed. 2010, 49, 6288.
- 47C. Zhu, Q. Yang, L. Liu, F. Lv, S. Li, G. Yang, S. Wang, Adv. Mater. 2011, 23, 4805.
- 48C. Nie, B. Wang, J. Zhang, Y. Cheng, F. Lv, L. Liu, S. Wang, Small 2015, 11, 2555.
- 49Q. Huang, H. Zhao, M. Shui, D. S. Guo, R. Wang, Chem. Sci. 2020, 11, 9623.
- 50B. I. Lee, S. Lee, Y. S. Suh, J. S. Lee, A. K. Kim, O. Y. Kwon, K. Yu, C. B. Park, Angew. Chem., Int. Ed. 2015, 54, 11472.
- 51F. L. Heppner, R. M. Ransohoff, B. Becher, Nat. Rev. Neurosci. 2015, 16, 358.
- 52M. W. Salter, S. Beggs, Cell 2014, 158, 15.
- 53M. Prinz, J. Priller, Nat. Rev. Neurosci. 2014, 15, 300.