Oxygen Vacancy Engineering Synergistic with Surface Hydrophilicity Modification of Hollow Ru Doped CoNi-LDH Nanotube Arrays for Boosting Hydrogen Evolution
Qianqian Li
School of Materials Science and Engineering, Anhui University, Hefei, 230601 P. R. China
Search for more papers by this authorFangzhi Huang
School of Chemistry and Chemical Engineering, Anhui University, Hefei, 230601 P. R. China
Search for more papers by this authorShikuo Li
School of Materials Science and Engineering, Anhui University, Hefei, 230601 P. R. China
Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, 230601 P. R. China
Search for more papers by this authorCorresponding Author
Hui Zhang
School of Materials Science and Engineering, Anhui University, Hefei, 230601 P. R. China
Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, 230601 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Xin-Yao Yu
Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, 230601 P. R. China
Insititute of Physical Science and Information Technology, Anhui University, Hefei, 230601 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorQianqian Li
School of Materials Science and Engineering, Anhui University, Hefei, 230601 P. R. China
Search for more papers by this authorFangzhi Huang
School of Chemistry and Chemical Engineering, Anhui University, Hefei, 230601 P. R. China
Search for more papers by this authorShikuo Li
School of Materials Science and Engineering, Anhui University, Hefei, 230601 P. R. China
Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, 230601 P. R. China
Search for more papers by this authorCorresponding Author
Hui Zhang
School of Materials Science and Engineering, Anhui University, Hefei, 230601 P. R. China
Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, 230601 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Xin-Yao Yu
Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, 230601 P. R. China
Insititute of Physical Science and Information Technology, Anhui University, Hefei, 230601 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
With the development of clean hydrogen energy, the cost effective and high-performance hydrogen evolution reaction (HER) electrocatalysts are urgently required. Herein, a green, facile, and time-efficient Ru doping synergistic with air-plasma treatment strategy is reported to boost the HER performance of CoNi-layered double hydroxide (LDH) nanotube arrays (NTAs) derived from zeolitic imidazolate framework nanorods. The Ru doping and air-plasma treatment not only regulate the oxygen vacancy to optimize the electron structure but also increase the surface roughness to improve the hydrophilicity and hydrogen spillover efficiency. Therefore, the air plasma treated Ru doped CoNi-LDH (P-Ru-CoNi-LDH) nanotube arrays display superior HER performance with an overpotential of 29 mV at a current density of 10 mA cm−2. Furthermore, by assembling P-Ru-CoNi-LDH as both cathode and anode for two-electrode urea-assisted water electrolysis, a small cell voltage of 1.36 V is needed at 10 mA cm−2 and can last for 100 h without any obvious activity attenuation that showing outstanding durability. In general, the P-Ru-CoNi-LDH can improve the HER performance from intrinsic electronic structure regulation cooperated with extrinsic surface wettability modification. These findings provide an effective intrinsic and extrinsic synergistic effect avenue to develop high performance HER electrocatalysts, which is potential to be applied to other research fields.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
smll202104323-sup-0001-SuppMat.pdf5.2 MB | Supporting Information |
smll202104323-sup-0002-MovieS1.mp41 MB | Supplemental Movie 1 |
smll202104323-sup-0003-VideoS2.mp44.5 MB | Supplemental Video 2 |
smll202104323-sup-0004-VideoS3.mp44.5 MB | Supplemental Video 3 |
smll202104323-sup-0005-MovieS4.mp43.1 MB | Supplemental Movie 4 |
smll202104323-sup-0006-MovieS5.mp44.5 MB | Supplemental Movie 5 |
smll202104323-sup-0007-VideoS6.mp45.7 MB | Supplemental Video 6 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) S. Chu, A. Majumdar, Nature 2012, 488, 294; b) L. Li, P. Wang, Q. Shao, X. Huang, Chem. Soc. Rev. 2020, 49, 3072. c) J. Li, Z. Xia, Q. Xue, M. Zhang, S. Zhang, H. Xiao, Y. Ma, Y. Qu, Small 2021, 17, 2103018.
- 2a) J. Zhang, X. Shang, H. Ren, J. Chi, H. Fu, B. Dong, C. Liu, Y. J. A. M. Chai, Adv. Mater. 2019, 31, 1905107; b) W. Hua, H.-H. Sun, F. Xu, J.-G. Wang, Rare Met. 2020, 39, 335.
- 3X.-Y. Zhang, F. Li, R.-Y. Fan, J. Zhao, B. Dong, F.-L. Wang, H. Liu, J. Yu, C. Liu, Y. M. Chai, J. Mater. Chem. A 2021, 9, 15836.
- 4a) Z. W. Seh, J. Kibsgaard, C. F. Dickens, I. B. Chorkendorff, J. K. Norskov, T. F. Jaramillo, Science 2017, 355, eaad4998; b) D. Liu, X. Li, S. Chen, H. Yan, L. Song, Nat. Energy 2019, 4, 329.
- 5a) V. Ramalingam, P. Varadhan, H. Fu, H. Kim, J. He, Adv. Mater. 2019, 31, 1903841; b) M. Ning, L. Wu, F. Zhang, D. Wang, S. Song, T. Tong, J. Bao, S. Chen, L. Yu, Z. Ren, Mater. Today Phys. 2021, 19, 100419; c) W.-L. Ding, Y.-H. Cao, H. Liu, A.-X. Wang, C.-J. Zhang, X.-R. Zheng, Rare Met. 2021, 40, 1373.
- 6a) L. Yu, H. Zhou, J. Sun, F. Qin, D. Luo, L. Xie, F. Yu, J. Bao, Y. Li, Y. Yu, S. Chen, Z. Ren, Nano Energy 2017, 41, 327; b) L. Yang, Z. Liu, S. Zhu, L. Feng, W. Xing, Mater. Today Phys. 2021, 16, 100292.
- 7a) Y. Wen, X. Y. Fang, X. B. Chen, D. P. Yan, Nanoscale 2018, 10, 19484; b) P. Li, X. Duan, Y. Kuang, Y. Li, G. Zhang, W. Liu, X. Sun, Adv. Energy Mater. 2018, 8, 1703341.
- 8a) X. Yang, A. FernáNdez-CarrióN, J. Wang, F. Porcher, F. Fayon, M. Allix, X. Kuang, Nat. Commun. 2018, 9, 4484; b) C. F. Li, J. W. Zhao, J. Q. Wu, L. J. Xie, G. R. Li, Appl. Catal., B 2021, 291, 119987.
- 9Y. A. Na, M. A. Ran, W. B. Fei, A. Zf, A. Gc, L. Wei, Appl. Catal., B 2020, 277, 119282.
- 10T. Zhang, M. Y. Wu, D. Y. Yan, J. Mao, H. Liu, W. B. Hu, X. W. Du, T. Ling, S. Z. Qiao, Nano Energy 2018, 43, 103.
- 11S. Liu, J. Zhu, M. Sun, Z. Ma, K. Hu, T. Nakajima, X. Liu, P. Schmuki, L. Wang, J. Mater. Chem. A 2020, 8, 2490.
- 12A. Yt, L. A. Qian, D. B. Lin, B. Hao, B. Xyya, Appl. Catal., B 2020, 266, 118627.
- 13J. Jin, J. Yin, H. Liu, B. Huang, C. H. Yan, Angew. Chem., Int. Ed. 2021, 60, 2.
- 14Z. Xiao, Y. Wang, Y.-C. Huang, Z. Wei, C.-L. Dong, J. Ma, S. Shen, Y. Li, S. Wang, Energy Environ. Sci. 2017, 10, 2563.
- 15J. Yin, J. Jin, M. Lu, B. Huang, C. H. Yan, J. Am. Chem. Soc. 2020, 142, 18378.
- 16B. K. Kim, M. J. Kim, J. J. Kim, ACS Appl. Mater. Interfaces 2021, 13, 11940.
- 17Q. Hu, Z. Wang, X. Huang, Y. Qin, H. Yang, X. Ren, Q. Zhang, J. Liu, M. Shao, C. He, Appl. Catal., B 2021, 286, 119920.
- 18D. Kim, X. Qin, B. Yan, Y. Piao, Chem. Eng. J. 2021, 408, 127331.
- 19Z. Y. Lu, M. Sun, T. H. Xu, Y. J. Li, W. W. Xu, Adv. Mater. 2015, 27, 2361.
- 20a) X. Chen, Y. Wu, B. Su, J. Wang, Y. Song, J. Lei, Adv. Mater. 2012, 24, 5884; b) W. Barthlott, T. Schimmel, S. Wiersch, K. Koch, M. Brede, M. Barczewski, S. Walheim, A. Weis, A. Kaltenmaier, A. Leder, Adv. Mater. 2010, 22, 2325.
- 21N. Han, K. R. Yang, Z. Lu, Y. Li, X. Sun, Nat. Commun. 2018, 9, 924.
- 22J. Mahmood, F. Li, S. M. Jung, M. S. Okyay, I. Ahmad, S. J. Kim, N. Park, H. Y. Jeong, J. B. Baek, Nat. Nanotechnol. 2017, 12, 441.
- 23a) J. Zhang, K. Xiao, T. Zhang, G. Qian, Y. Wang, Y. Feng, Electrochim. Acta 2017, 226, 113. b) L. Yu, J. F. Yang, B. Y. Guan, Y. Lu, X. W. D. Lou, Angew. Chem., Int. Ed. 2018, 57, 172.
- 24a) X. H. Chen, Q. Zhang, L. L. Wu, L. Shen, H. C. Fu, J. Luo, X. L. Li, J. L. Lei, H. Q. Luo, N. B. Li, Mater. Today Phys. 2020, 15, 100268; b) X. Wang, Q. Hu, G. Li, S. Wei, H. Yang, C. He, J. Mater. Chem. A 2021, 9, 15648; c) M. Wei, S. Huang, Y. Wang, Y. Liu, Y. He, C. Wang, L. Yang, J. Alloys Compd. 2020, 827, 154207.
- 25Y. Guo, X. Hong, Y. Wang, Q. Li, J. Meng, R. Dai, X. Liu, L. He, L. Mai, Adv. Funct. Mater. 2019, 29, 1809004.
- 26a) G. Chen, T. Wang, J. Zhang, P. Liu, H. Sun, X. Zhuang, M. Chen, X. Feng, Adv. Mater. 2018, 30, 1706279; b) J. Su, Y. Yang, G. Xia, J. Chen, P. Jiang, Q. Chen, Nat. Commun. 2017, 8, 14969.
- 27J. Wang, J. Liu, B. Zhang, F. Cheng, Y. Ruan, X. Ji, K. Xu, C. Chen, L. Miao, J. Jiang, Nano Energy 2018, 53, 144.
- 28a) L. Xu, Q. Jiang, Z. Xiao, X. Li, J. Huo, S. Wang, L. Dai, Angew. Chem., Int. Ed. 2016, 128, 5363; b) H. Mistry, A. S. Varela, C. S. Bonifacio, I. Zegkinoglou, I. Sinev, Y.-W. Choi, K. Kisslinger, E. A. Stach, J. C. Yang, P. Strasser, Nat. Commun. 2016, 7, 12123.
- 29L. Qian, Z. Lu, T. Xu, X. Wu, Y. Tian, Y. Li, Z. Huo, X. Sun, X. Duan, Adv. Energy Mater. 2015, 5, 1500245.
- 30H. Liu, X. Liu, Z. Mao, Z. Zhao, X. Peng, J. Luo, X. Sun, J. Power Sources 2018, 400, 190.
- 31J. Hu, C. Zhang, L. Jiang, H. Lin, Y. An, D. Zhou, M. K. Leung, S. Yang, Joule 2017, 1, 383.
- 32W. J. Xua, F. L. Lyu, Y. C. Bai, A. Q. Gao, J. Feng, Z. X. Cai, Y. D. Yin, Nano Energy 2018, 43, 110.
- 33a) H. Liu, P. Chen, X. Yuan, Y. Zhang, F. Dong, Chin. J. Catal. 2019, 40, 620; b) Y. Tang, H. Shen, J. Cheng, Z. Liang, C. Qu, H. Tabassum, R. Zou, Adv. Funct. Mater. 2020, 30, 1908223.
- 34J. Li, H. X. Liu, W. Gou, M. Zhang, Z. Xia, S. Zhang, C. R. Chang, Y. Ma, Y. Qu, Energy Environ. Sci. 2019, 12, 2298.
- 35a) J. Zhang, Z. Li, Y. Chen, S. Gao, X. Lou, Angew. Chem., Int. Ed. 2018, 57, 10944; b) B. Suryanto, Y. Wang, R. K. Hocking, W. Adamson, C. Y. Zhao, Nat. Commun. 2019, 10, 5599.
- 36a) J. S. Zhu, H. Yang, W. Zhang, Y. Mao, S. S. Lyu, J. Chen, Inorg. Chem. Front. 2020, 7, 1892; b) C. Zong, C. J. Chen, M. Zhang, D.-Y. Wu, B. Ren, J. Am. Chem. Soc. 2015, 137, 11768.
- 37a) C. Y. Li, J. B. Le, Y. H. Wang, S. Chen, Z. L. Yang, J. F. Li, J. Cheng, Z. Q. Tian, Nat. Mater. 2019, 18, 697; b) G. E. Walrafen, J. Chem. Phys. 1964, 40, 3249.
- 38a) Z. D. Schultz, S. K. Shaw, A. A. Gewirth, J. Am. Chem. Soc. 2005, 127, 15916; b) S. Nihonyanagi, S. Ye, K. Uosaki, L. Dreesen, C. Humbert, P. Thiry, A. Peremans, Surf. Sci. 2004, 573, 11.
- 39a) Y. Tong, F. Lapointe, M. Thämer, M. Wolf, R. K. Campen, Angew. Chem., Int. Ed. 2017, 56, 4211; b) J.-J. Velasco-Velez, C. H. Wu, T. A. Pascal, L. F. Wan, J. Guo, D. Prendergast, M. Salmeron, Science 2014, 346, 831.
- 40Q. Hu, G. Li, X. Liu, B. Zhu, X. Chai, Q. Zhang, J. Liu, C. He, Angew. Chem., Int. Ed. 2019, 58, 4318.
- 41K. Zhu, J. Chen, W. Wang, J. Liao, J. Dong, M. O. L. Chee, N. Wang, P. Dong, P. M. Ajayan, S. Gao, J. Shen, M. Ye, Adv. Funct. Mater. 2020, 30, 2003556.