General In Situ Photoactivation Route with IPCE over 80% toward CdS Photoanodes for Photoelectrochemical Applications
Ying Wang
Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201 China
Fujian Provincial Key Laboratory of Featured Biochemical and Chemical Materials, Ningde Normal University, Ningde, Fujian, 352100 China
Search for more papers by this authorXiuyu Chen
Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201 China
Search for more papers by this authorHao Xiu
Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201 China
Search for more papers by this authorHuanglong Zhuang
Fujian Provincial Key Laboratory of Featured Biochemical and Chemical Materials, Ningde Normal University, Ningde, Fujian, 352100 China
Fujian Province University Key Laboratory of Green Energy and Environment Catalysis, College of Chemistry and Materials, Ningde Normal University, Ningde, Fujian, 352100 China
Search for more papers by this authorJianming Li
Petroleum Geology Research and Laboratory Center, Research Institute of Petroleum Exploration and Development (RIPED), PetroChina, Beijing, 100083 China
Search for more papers by this authorYang Zhou
Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201 China
Search for more papers by this authorCorresponding Author
Deyu Liu
Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201 China
University of Chinese Academy of Sciences, Beijing, 100000 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Yongbo Kuang
Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201 China
University of Chinese Academy of Sciences, Beijing, 100000 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorYing Wang
Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201 China
Fujian Provincial Key Laboratory of Featured Biochemical and Chemical Materials, Ningde Normal University, Ningde, Fujian, 352100 China
Search for more papers by this authorXiuyu Chen
Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201 China
Search for more papers by this authorHao Xiu
Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201 China
Search for more papers by this authorHuanglong Zhuang
Fujian Provincial Key Laboratory of Featured Biochemical and Chemical Materials, Ningde Normal University, Ningde, Fujian, 352100 China
Fujian Province University Key Laboratory of Green Energy and Environment Catalysis, College of Chemistry and Materials, Ningde Normal University, Ningde, Fujian, 352100 China
Search for more papers by this authorJianming Li
Petroleum Geology Research and Laboratory Center, Research Institute of Petroleum Exploration and Development (RIPED), PetroChina, Beijing, 100083 China
Search for more papers by this authorYang Zhou
Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201 China
Search for more papers by this authorCorresponding Author
Deyu Liu
Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201 China
University of Chinese Academy of Sciences, Beijing, 100000 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Yongbo Kuang
Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201 China
University of Chinese Academy of Sciences, Beijing, 100000 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Cost-effective photoanodes with remarkable electronic properties are highly demanded for practical photoelectrochemical (PEC) water splitting. The ability to manipulate the surface carrier separation and recombination is pivotal for achieving high PEC performance for water splitting. Here, a facile and economical approach is reported for substantially improving the surface charge separation property of CdS photoanodes through in situ photoactivation, which significantly reduces surface charge recombination through the formation of thiosulfate ion which is favorable to the transfer of photogenerated holes and a uniform nanoporous morphology via the dissolving Cd2+ with phosphate ions on the surface of CdS. The resulting CdS electrodes through scalable particle transfer method exhibit nearly tripled photocurrents, with an incident-photon-to-current conversion efficiency (IPCE) at 480 nm exceeding 80% at 0.6 V versus reversible hydrogen electrode (RHE). And the CdS thin films prepared from chemical bath deposition display quadrupled photocurrents after the stir and PEC activation, with an IPCE of 91.7% at 455 nm and 0.6 V versus RHE. With the suppression of photocorrosion in alkaline borate buffer, the activated photoanodes show great stability for solar hydrogen production at the sacrifice of sulfite. This work brings insights into the design of nanoporous metal sulfide semiconductors for solar water splitting.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
smll202104307-sup-0001-SuppMat.pdf2.8 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1P. K. Nayak, S. Mahesh, H. J. Snaith, D. Cahen, Nat. Rev. Mater. 2019, 4, 269.
- 2P. Zhang, S. Wang, B. Y. Guan, X. W. Lou, Energy Environ. Sci. 2019, 12, 164.
- 3A. Pareek, P. Paik, P. H. Borse, Dalton Trans. 2016, 45, 11120.
- 4H. Wang, Y. Song, X. Liu, S. Lu, C. Zhou, Y. Jin, Y. Yang, Trans. Tianjin Univ. 2020, 26, 382.
- 5I. Hwang, K. Yong, ACS Appl. Mater. Interfaces 2016, 8, 4226.
- 6Q. Liu, P. Mantilla-Perez, M. Montes Bajo, P. Romero-Gomez, J. Martorell, ACS Appl. Mater. Interfaces 2016, 8, 28750.
- 7P. Qin, T. Wu, Z. Wang, L. Xiao, L. Ma, F. Ye, L. Xiong, X. Chen, H. Li, X. Yu, G. Fang, Adv. Funct. Mater. 2020, 30, 1908408.
- 8O. Madelung, U. Rössler, M. Schulz, in II-VI and I-VII compounds; semimagnetic compounds, Vol. 41B, Springer, Heidelberg, Germany 1999, Ch. 1.
10.1007/b71137 Google Scholar
- 9K. Zhao, X. Yan, Y. Gu, Z. Kang, Z. Bai, S. Cao, Y. Liu, X. Zhang, Y. Zhang, Small 2016, 12, 245.
- 10Y. Liu, K. Yan, J. Zhang, ACS Appl. Mater. Interfaces 2016, 8, 28255.
- 11R. Pan, J. Liu, Y. Li, X. Li, E. Zhang, Q. Di, M. Su, J. Zhang, J. Mater. Chem. A 2019, 7, 23038.
- 12C. Wang, X. Tong, W. Wang, J. Y. Xu, L. V. Besteiro, A. I. Channa, F. Lin, J. Wu, Q. Wang, A. O. Govorov, A. Vomiero, Z. M. Wang, ACS Appl. Mater. Interfaces 2020, 12, 36277.
- 13Y. Feng, E. Ngaboyamahina, K. E. Marusak, Y. Cao, L. You, J. T. Glass, S. Zauscher, J. Phys. Chem. C 2017, 121, 3734.
- 14W. D. Park, Trans. Electr. Electron. Mater. 2012, 13, 196.
10.4313/TEEM.2012.13.4.196 Google Scholar
- 15A. B. Ellis, S. W. Kaiser, M. S. Wrighton, J. Am. Chem. Soc. 1976, 98, 6855.
- 16T. Inoue, T. Watanabe, A. Fujishima, K. i. Honda, K. Kohayakawa, J. Electrochem. Soc. 1977, 124, 719.
- 17T. Ling, S. A. Kulinich, Z. L. Zhu, S. Z. Qiao, X. W. Du, Adv. Funct. Mater. 2014, 24, 707.
- 18Y. R. Lu, P. F. Yin, J. Mao, M. J. Ning, Y. Z. Zhou, C. K. Dong, T. Ling, X. W. Du, J. Mater. Chem. A 2015, 3, 18521.
- 19N. Guijarro, M. S. Prévot, X. A. Jeanbourquin, X. Yu, K. Sivula, Chem. Mater. 2015, 27, 6337.
- 20P. Zhang, B. Y. Guan, L. Yu, X. W. Lou, Chem 2018, 4, 162.
- 21S. i. Naya, T. Kume, R. Akashi, M. Fujishima, H. Tada, J. Am. Chem. Soc. 2018, 140, 1251.
- 22F. Si, C. Tang, Q. Gao, F. Peng, S. Zhang, Y. Fang, S. Yang, J. Mater. Chem. A 2020, 8, 3083.
- 23L. Wei, Z. Guo, X. Jia, Catal. Lett. 2021, 151, 56.
- 24Y. He, J. Zhu, Y. Yuan, M. Li, Y. Yang, Y. Liu, M. Chen, D. Cao, X. Yan, J. Mater. Chem. A 2021, 9, 7594.
- 25W. Wang, C. Jin, L. Qi, Small 2018, 14, 1801352.
- 26C. Chen, W. Tian, W. Xu, F. Cao, L. Li, ChemElectroChem 2019, 6, 5248.
- 27P. Dagar, N. Ghorai, K. Ojha, H. N. Ghosh, A. K. Ganguli, J. Phys. Chem. C 2021, 125, 8684.
- 28Z. L. He, C. Yuan, H. Gao, Z. Mou, S. Qian, C. Zhai, C. Lu, ACS Sustainable Chem. Eng. 2020, 8, 12331.
- 29G. Hodes, in Energy Resources Through Photochemistry and Catalysis (Ed: M. Grätzel), Elsevier, New York 1983, p. 421.
10.1016/B978-0-12-295720-8.50017-X Google Scholar
- 30Q. T. Liu, D. Y. Liu, J. M. Li, Y. B. Kuang, Front. Phys. 2019, 14, 53403.
- 31Z. Su, G. Liang, P. Fan, J. Luo, Z. Zheng, Z. Xie, W. Wang, S. Chen, J. Hu, Y. Wei, C. Yan, J. Huang, X. Hao, F. Liu, Adv. Mater. 2020, 32, 2000121.
- 32M. Buffière, G. Brammertz, S. Oueslati, H. E. Anzeery, J. Bekaert, K. B. Messaoud, C. Köble, S. Khelifi, M. Meuris, J. Poortmans, J. Phys. D: Appl. Phys. 2014, 47, 175101.
- 33M. Solakidou, A. Giannakas, Y. Georgiou, N. Boukos, M. Louloudi, Y. Deligiannakis, Appl. Catal., B 2019, 254, 194.
- 34A. Pareek, P. Paik, P. H. Borse, Langmuir 2014, 30, 15540.
- 35N. Jiang, X. Li, H. Guo, J. Li, K. Shang, N. Lu, Y. Wu, Chem. Eng. J. 2021, 412, 128627.
- 36X. L. Zheng, J. P. Song, T. Ling, Z. P. Hu, P. F. Yin, K. Davey, X. W. Du, S. Z. Qiao, Adv. Mater. 2016, 28, 4935.
- 37A. Heller, K. C. Chang, B. Miller, J. Electrochem. Soc. 1977, 124, 697.
- 38I. J. Ferrer, P. Salvador, J. G. Velasco, J. Electroanal. Chem. Interfacial Electrochem. 1985, 189, 363.
- 39A. B. Ellis, S. W. Kaiser, M. S. Wrighton, J. Am. Chem. Soc. 1976, 98, 1635.
- 40G. Hodes, D. Cahen, H. J. Leamy, J. Appl. Phys. 1983, 54, 4676.
- 41G. Hodes, J. Manassen, D. Cahen, J. Electrochem. Soc. 1981, 128, 2325.
- 42N. Müller, R. Tenne, Appl. Phys. Lett. 1981, 39, 283.
- 43D. Lee, W. Wang, C. Zhou, X. Tong, M. Liu, G. Galli, K. S. Choi, Nat. Energy 2021, 6, 287.
- 44L. Hu, R. J. Patterson, Y. Hu, W. Chen, Z. Zhang, L. Yuan, Z. Chen, G. J. Conibeer, G. Wang, S. Huang, Adv. Funct. Mater. 2017, 27, 1703687.
- 45T. Minegishi, N. Nishimura, J. Kubota, K. Domen, Chem. Sci. 2013, 4, 1120.
- 46Z. Wang, T. D. Nguyen, L. P. Yeo, C. K. Tan, L. Gan, A. I. Y. Tok, Small 2020, 16, 1905826.
- 47Z. Yu, L. Huang, J. Chen, M. Li, D. Tang, Sens. Actuators, B 2021, 343, 130136.
- 48G. Cai, Z. Yu, R. Ren, D. Tang, ACS Sens. 2018, 3, 632.
- 49R. Zeng, Z. Luo, L. Su, L. Zhang, D. Tang, R. Niessner, D. Knopp, Anal. Chem. 2019, 91, 2447.
- 50F. F. Abdi, T. J. Savenije, M. M. May, B. Dam, R. van de Krol, J. Phys. Chem. Lett. 2013, 4, 2752.
- 51T. W. Kim, K. S. Choi, Science 2014, 343, 990.
- 52Y. Kuang, Q. Jia, H. Nishiyama, T. Yamada, A. Kudo, K. Domen, Adv. Energy Mater. 2016, 6, 1501645.
- 53A. C. Norris, R. J. Soilleux, R. K. Cosgrove, Inorg. Nucl. Chem. Lett. 1972, 8, 293.
- 54C. Du, M. Zhang, J.-W. Jang, Y. Liu, G. Y. Liu, D. Wang, J. Phys. Chem. C 2014, 118, 17054.
- 55T. Simon, N. Bouchonville, M. J. Berr, A. Vaneski, A. Adrović, D. Volbers, R. Wyrwich, M. Döblinger, A. S. Susha, A. L. Rogach, F. Jäckel, J. K. Stolarczyk, J. Feldmann, Nat. Mater. 2014, 13, 1013.
- 56A. Balandin, K. L. Wang, N. Kouklin, S. Bandyopadhyay, Appl. Phys. Lett. 2000, 76, 137.
- 57Z. Gabelica, Chem. Lett. 1979, 8, 1419.
- 58Y. Zhu, Z. Zhu, X. Zhao, Y. Liang, L. Dai, Y. Huang, Geochem. Trans. 2015, 16, 9.
- 59Y. Zhu, X. Zhang, Y. Chen, Q. Xie, J. Lan, M. Qian, N. He, Chem. Geol. 2009, 268, 89.
- 60W. Luo, Z. Yang, Z. Li, J. Zhang, J. Liu, Z. Zhao, Z. Wang, S. Yan, T. Yu, Z. Zou, Energy Environ. Sci. 2011, 4, 4046.
- 61S. Bai, X. Li, Q. Kong, R. Long, C. Wang, J. Jiang, Y. Xiong, Adv. Mater. 2015, 27, 3444.