Atomistic Mechanics of Torn Back Folded Edges of Triangular Voids in Monolayer WS2
Corresponding Author
Gyeong Hee Ryu
School of Materials Science and Engineering, Gyeongsang National University, Jinju, 52828 Republic of Korea
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Gang Seob Jung
Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 USA
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorHyoju Park
Materials Graduate Program, Texas Materials Institute, The University of Texas at Austin, 204 East Dean Keeton Street, Austin, TX, 78712 USA
Search for more papers by this authorRen-Jie Chang
Department of Materials, University of Oxford, 16 Parks Road, Oxford, OX1 3PH UK
Search for more papers by this authorCorresponding Author
Jamie H. Warner
Walker Department of Mechanical Engineering, The University of Texas at Austin, 204 East Dean Keeton Street, Austin, TX, 78712 USA
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Gyeong Hee Ryu
School of Materials Science and Engineering, Gyeongsang National University, Jinju, 52828 Republic of Korea
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Gang Seob Jung
Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 USA
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorHyoju Park
Materials Graduate Program, Texas Materials Institute, The University of Texas at Austin, 204 East Dean Keeton Street, Austin, TX, 78712 USA
Search for more papers by this authorRen-Jie Chang
Department of Materials, University of Oxford, 16 Parks Road, Oxford, OX1 3PH UK
Search for more papers by this authorCorresponding Author
Jamie H. Warner
Walker Department of Mechanical Engineering, The University of Texas at Austin, 204 East Dean Keeton Street, Austin, TX, 78712 USA
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Triangular nanovoids in 2D materials transition metal dichalcogenides have vertex points that cause stress concentration and lead to sharp crack propagation and failure. Here, the atomistic mechanics of back folding around triangular nanovoids in monolayer WS2 sheets is examined. Combining atomic-resolution images from annular dark-field scanning transmission electron microscopy with reactive molecular modelling, it is revealed that the folding edge formation has statistical preferences under geometric conditions based on the orientation mismatch. It is further investigated how loading directions and strong interlayer friction, interplay with WS2 lattice's crack preference, govern the deformation and fracture pattern around folding edges. These results provide fundamental insights into the combination of fracture and folding in flexible monolayer crystals and the resultant Moiré lattices.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
smll202104238-sup-0001-SuppMat.pdf4 MB | Supporting Information |
smll202104238-sup-0002-MovieS1.mp413.7 MB | Supplemental Movie 1 |
smll202104238-sup-0003-MovieS2.mp44.5 MB | Supplemental Movie 2 |
smll202104238-sup-0004-MovieS3.mp46.1 MB | Supplemental Movie 3 |
smll202104238-sup-0005-MovieS4.mp45.6 MB | Supplemental Movie 4 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1A. Cao, J. Qu, Appl. Phys. Lett. 2013, 102, 071902.
- 2C. Daniels, A. Horning, A. Phillips, D. V. Massote, L. Liang, Z. Bullard, B. G. Sumpter, V. Meunier, J. Phys.: Condens. Matter 2015, 27, 373002.
- 3M. Li, T. Deng, B. Zheng, Y. Zhang, Y. Liao, H. Zhou, Nanomaterials 2019, 9, 347.
- 4X. Wang, A. Tabarraei, D. E. Spearot, Nanotechnology 2015, 26, 175703.
- 5H. Qin, Q. X. Pei, Y. Liu, Y. W. Zhang, Phys. Chem. Chem. Phys. 2019, 21, 15845.
- 6N. L. McDougall, J. G. Partridge, R. J. Nicholls, S. P. Russo, D. G. McCulloch, Phys. Rev. B 2017, 96, 144106.
- 7Y. Liu, X. Zou, B. I. Yakobson, ACS Nano 2012, 6, 7053.
- 8X.-L. Li, W.-P. Han, J.-B. Wu, X.-F. Qiao, J. Zhang, P.-H. Tan, Adv. Funct. Mater. 2017, 27, 1604468.
- 9J. Yang, X. Shen, C. Wang, Y. Chai, H. Yao, Extreme Mech. Lett. 2019, 29, 100473.
- 10M. Long, P. Wang, H. Fang, W. Hu, Adv. Funct. Mater. 2019, 29, 1803807.
- 11K. S. Novoselov, A. H. Castro Neto, Phys. Scr. 2012, 2012, 014006.
- 12P. Zhang, L. Ma, F. Fan, Z. Zeng, C. Peng, P. E. Loya, Z. Liu, Y. Gong, J. Zhang, X. Zhang, Nat. Commun. 2014, 5, 3782.
- 13Y. Chen, H. Xiao, Y. Liu, X. Chen, J. Phys. Chem. C 2018, 122, 6368.
- 14X. Zou, Y. Liu, B. I. Yakobson, Nano Lett. 2013, 13, 253.
- 15R. Wang, J. Yang, X. Wu, S. Wang, Nanoscale 2016, 8, 8210.
- 16N. Liu, R. Pidaparti, X. Wang, Phys. Chem. Chem. Phys. 2018, 20, 8668.
- 17K. Q. Dang, D. E. Spearot, J. Appl. Phys. 2014, 116, 013508.
- 18W.-H. Chen, I.-C. Chen, H.-C. Cheng, C.-F. Yu, J. Mater. Sci. 2017, 52, 3225.
- 19Z. G. Yu, Y. W. Zhang, B. I. Yakobson, Nano Lett. 2015, 15, 6855.
- 20Y.-C. Lin, T. Björkman, H.-P. Komsa, P.-O. Teng, C.-H. Yeh, F.-S. Huang, K.-H. Lin, J. Zadczak, Y.-S. Huang, P.-W. Chiu, A. V. Krasheninnikov, K. Suenaga, Nat. Commun. 2015, 6, 6736.
- 21G. H. Ryu, A. France-Lanord, Y. Wen, S. Zhou, J. C. Grossman, J. H. Warner, ACS Nano 2018, 12, 11638.
- 22J. Chen, G. H. Ryu, S. Sinha, J. H. Warner, ACS Nano 2019, 13, 8256.
- 23G. H. Ryu, T. Zhu, J. Chen, S. Sinha, V. Shautsova, J. C. Grossman, J. H. Warner, Adv. Mater. 2019, 31, 1904251.
- 24J. Shim, S.-H. Bae, W. Kong, D. Lee, K. Qiao, D. Nerich, Y. J. Park, R. Zhao, S. Sundaram, X. Li, H. Yeon, C. Choi, H. Kum, R. Yue, G. Zhou, Y. Ou, K. Lee, J. Moodera, X. Zhao, J.-H. Ahn, C. Hinkle, A. Ougazzaden, J. Kim, Science 2018, 362, 665.
- 25G. López-Polín, J. Gómez-Herrero, C. Gómez-Navarro, Nano Lett. 2015, 15, 2050.
- 26P. R. Budarapu, B. Javvaji, V. K. Sutrakar, D. Roy Mahapatra, T. Rabczuk, J. Appl. Phys. 2015, 118, 064307.
- 27H. Qin, V. Sorkin, Q.-X. Pei, Y. Liu, Y.-W. Zhang, J. Appl. Mech. 2020, 87, 030802.
- 28D. Akinwande, C. J. Brennan, J. S. Bunch, P. Egberts, J. R. Felts, H. Gao, R. Huang, J.-S. Kim, T. Li, Y. Li, K. M. Liechti, N. Lu, H. S. Park, E. J. Reed, P. Wang, B. I. Yakobson, T. Zhang, Y.-W. Zhang, Y. Zhou, Y. Zhu, Extreme Mech. Lett. 2017, 13, 42.
- 29T. Zhang, X. Li, H. Gao, Int. J. Fract. 2015, 196, 1.
- 30S. S. Terdalkar, S. Huang, H. Yuan, J. J. Rencis, T. Zhu, S. Zhang, Chem. Phys. Lett. 2010, 494, 218.
- 31F. Meng, C. Chen, J. Song, J. Phys. Chem. Lett. 2015, 6, 4038.
- 32L. Xu, N. Wei, Y. Zheng, Nanotechnology 2013, 24, 505703.
- 33T. Rakib, S. Mojumder, S. Das, S. Saha, M. Motalab, Phys. B 2017, 515, 67.
- 34S. Wang, Z. Qin, G. S. Jung, F. J. Martin-Martinez, K. Zhang, M. J. Buehler, J. H. Warner, ACS Nano 2016, 10, 9831.
- 35G. S. Jung, S. Wang, Z. Qin, F. J. Martin-Martinez, J. H. Warner, ACS Nano 2018, 12, 3600.
- 36G. S. Jung, S. Wang, Z. Qin, S. Zhou, M. Danie, A. I. Kirkland, M. J. Buehler, J. H. Warner, ACS Nano 2019, 13, 5693.
- 37T. H. Ly, J. Zhao, M. O. Cichocka, L.-J. Li, Y. H. Lee, Nat. Commun. 2017, 8, 14116.
- 38H. Bao, Y. Huang, Z. Yang, Y. Sun, Y. Bai, Y. Miao, P. K. Chu, K. Xu, F. Ma, J. Phys. Chem. C 2018, 122, 1351.
- 39A. Apte, V. Kochat, P. Rajak, A. Krishnamoorthy, P. Manimunda, J. A. Hachtel, J. C. Idrobo, S. A. S. Amanulla, P. Vashishta, A. Nakano, R. K. Kalia, C. S. Tiwary, P. M. Ajayan, ACS Nano 2018, 12, 3468.
- 40C. Zhang, C.-P. Chuu, X. Ren, M.-Y. Li, L.-J. Li, C. Jin, M.-Y. Chou, C.-K. Shih, Sci. Adv. 2017, 3, e1601459.
- 41M.-L. Lin, Q.-H. Tan, J.-B. Wu, X.-S. Chen, J.-H. Wang, Y.-H. Pan, X. Zhang, X. Cong, J. Zhang, W. Ji, P.-A. Hu, K.-H. Liu, P.-H. Tan, ACS Nano 2018, 12, 8770.
- 42S. Xiong, G. Cao, Nanotechnology 2016, 27, 105701.
- 43J. H. Kim, K. Kim, Z. Lee, Sci. Rep. 2015, 5, 12508.
- 44J. He, K. Hummer, C. Franchini, Phys. Rev. B 2014, 89, 075409.
- 45S. Plimpton, J. Comput. Phys. 1995, 117, 1.
- 46D. W. Brenner, O. A. Shenderova, J. A. Harrison, S. J. Stuart, B. Ni, S. B. Sinnott, J. Phys.: Condens. Matter 2002, 14, 783.
- 47T. Liang, S. R. Phillpot, S. B. Sinnott, Phys. Rev. B 2009, 79, 245110.
- 48J. A. Stewart, D. E. Spearot, Modell. Simul. Mater. Sci. Eng. 2013, 21, 045003.
- 49Y. Han, M.-Y. Li, G.-S. Jung, M. A. Marsalis, Z. Qin, M. J. Buehler, L.-J. Li, D. A. Muller, Nat. Mater. 2018, 17, 129.
- 50J. Chen, G. S. Jung, G. H. Ryu, R.-J. Chang, S. Zhou, Y. Wen, M. J. Buehler, J. H. Warner, Small 2019, 15, 1902590.