Grain Boundary Design of Solid Electrolyte Actualizing Stable All-Solid-State Sodium Batteries
Chengzhi Wang
Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorZheng Sun
Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorCorresponding Author
Yongjie Zhao
Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorBoyu Wang
Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorChangxiang Shao
Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorChen Sun
Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorCorresponding Author
Yang Zhao
Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorJingbo Li
Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorHaibo Jin
Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorCorresponding Author
Liangti Qu
Department of Chemistry, Tsinghua University, Beijing, 100084 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorChengzhi Wang
Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorZheng Sun
Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorCorresponding Author
Yongjie Zhao
Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorBoyu Wang
Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorChangxiang Shao
Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorChen Sun
Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorCorresponding Author
Yang Zhao
Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorJingbo Li
Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorHaibo Jin
Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorCorresponding Author
Liangti Qu
Department of Chemistry, Tsinghua University, Beijing, 100084 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorAbstract
Advanced inorganic solid electrolytes (SEs) are critical for all-solid-state alkaline metal batteries with high safety and high energy densities. A new interphase design to address the urgent interfacial stability issues against all-solid-state sodium metal batteries (ASSMBs) is proposed. The grain boundary phase of a Mg2+-doped Na3Zr2Si2PO12 conductor (denoted as NZSP-xMg) is manipulated to introduce a favorable Na3−2δMgδPO4-dominant interphase which facilitates its intimate contact with Na metal and works as an electron barrier to suppress Na metal dendrite penetration into the electrolyte bulk. The optimal NZSP-0.2Mg electrolyte endows a low interfacial resistance of 93 Ω cm2 at room temperature, over 16 times smaller than that of Na3Zr2Si2PO12. The Na plating/stripping with small polarization is retained under 0.3 mA cm-2 for more than 290 days (7000 h), representing a record high cycling stability of SEs for ASSMBs. An all-solid-state NaCrO2//Na battery is accordingly assembled manifesting a high capacity of 110 mA h g-1 at 1 C for 1755 cycles with almost no capacity decay. Excellent rate capability at 5 C is realized with a high Coulombic efficiency of 99.8%, signifying promising application in solid-state electrochemical energy storage systems.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research Data are not shared.
Supporting Information
Filename | Description |
---|---|
smll202103819-sup-0001-SuppMat.pdf1.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) H. Pan, Y.-S. Hu, L. Chen, Energy Environ. Sci. 2013, 6, 2338; b) R. Chen, Q. Li, X. Yu, L. Chen, H. Li, Chem. Rev. 2020, 120, 6820; c) S. Lou, F. Zhang, C. Fu, M. Chen, Y. Ma, G. Yin, J. Wang, Adv. Mater. 2020, 33, 2000721; d) H.-L. Yang, B.-W. Zhang, K. Konstantinov, Y.-X. Wang, H.-K. Liu, S.-X. Dou, Adv. Energy Sustainability Res. 2021, 2, 2000057; e) Y. Lu, L. Li, Q. Zhang, Z. Niu, J. Chen, Joule 2018, 2, 1747; f) H. Wan, L. Cai, Y. Yao, W. Weng, Y. Feng, J. P. Mwizerwa, G. Liu, Y. Yu, X. Yao, Small 2020, 16, 2001574.
- 2H. Wan, L. Cai, F. Han, J. P. Mwizerwa, C. Wang, X. Yao, Small 2019, 15, 1905849.
- 3a) Y. Uchida, G. Hasegawa, K. Shima, M. Inada, N. Enomoto, H. Akamatsu, K. Hayashi, ACS Appl. Energy Mater. 2019, 2, 2913; b) Z. Zhang, S. Wenzel, Y. Zhu, J. Sann, L. Shen, J. Yang, X. Yao, Y.-S. Hu, C. Wolverton, H. Li, L. Chen, J. Janek, ACS Appl. Energy Mater. 2020, 3, 7427; c) J. Yang, G. Liu, M. Avdeev, H. Wan, F. Han, L. Shen, Z. Zou, S. Shi, Y.-S. Hu, C. Wang, X. Yao, ACS Energy Lett. 2020, 5, 2835; d) Y. Lu, J. A. Alonso, Q. Yi, L. Lu, Z. L. Wang, C. W. Sun, Adv. Energy Mater. 2019, 9, 1901205; e) Z. Gao, J. Yang, H. Yuan, H. Fu, Y. Li, Y. Li, T. Ferber, C. Guhl, H. Sun, W. Jaegermann, R. Hausbrand, Y. Huang, Chem. Mater. 2020, 32, 3970.
- 4a) H. Y.-P. Hong, Mater. Res. Bull. 1976, 11, 173; b) J. B. Goodenough, H. Y.-P. Hong, J. A. Kafalas, Mater. Res. Bull. 1976, 11, 203.
- 5a) Q. Ma, M. Guin, S. Naqash, C.-L. Tsai, F. Tietz, O. Guillon, Chem. Mater. 2016, 28, 4821; b) M. Samiee, B. Radhakrishnan, Z. Rice, Z. Deng, Y. S. Meng, S. P. Ong, J. Luo, J. Power Sources 2017, 347, 229; c) S. Song, H. M. Duong, A. M. Korsunsky, N. Hu, L. Lu, Sci. Rep. 2016, 6, 32330; d) L. Shen, J. Yang, G. Liu, M. Avdeev, X. Yao, Mater. Today Energy 2021, 20, 100691.
- 6a) H. Leng, J. Huang, J. Nie, J. Luo, J. Power Sources 2018, 391, 170; b) J. G. Pereira da Silva, M. Bram, A. M. Laptev, J. Gonzalez-Julian, Q. Ma, F. Tietz, O. Guillon, J. Eur. Ceram. Soc. 2019, 39, 2697; c) X. Wang, Z. Liu, Y. Tang, J. Chen, D. Wang, Z. Mao, J. Power Sources 2021, 481, 228924; d) K. Ren, Y. Cao, Y. Chen, G. Shao, J. Dai, Y. Wang, Scr. Mater. 2020, 187, 384; e) H. Wang, K. Okubo, M. Inada, G. Hasegawa, N. Enomoto, K. Hayashi, Solid State Ionics 2018, 322, 54.
- 7a) T. Honma, M. Okamoto, T. Togashi, N. Ito, K. Shinozaki, T. Komatsu, Solid State Ionics 2015, 269, 19; b) Y. Shao, G. Zhong, Y. Lu, L. Liu, C. Zhao, Q. Zhang, Y.-S. Hu, Y. Yang, L. Chen, Energy Storage Mater. 2019, 23, 514.
- 8Q. Ma, C.-L. Tsai, X.-K. Wei, M. Heggen, F. Tietz, J. T. S. Irvine, J. Mater. Chem. A 2019, 7, 7766.
- 9Z. Zhang, Z. Zou, K. Kaup, R. Xiao, S. Shi, M. Avdeev, Y. S. Hu, D. Wang, B. He, H. Li, X. Huang, L. F. Nazar, L. Chen, Adv. Energy Mater. 2019, 9, 1902373.
- 10a) M. Mustafa, M. S. A. Rani, S. B. R. S. Adnan, F. M. Salleh, N. S. Mohamed, Ceram. Int. 2020, 46, 28145; b) Z. Khakpour, Electrochim. Acta 2016, 196, 337; c) M. Guin, F. Tietz, J. Power Sources 2015, 273, 1056.
- 11a) Y. Ren, Z. Zou, Q. Zhao, D. Wang, J. Yu, S. Shi, Acta Phys. Sin. 2020, 69, 226601; b) Z. Zou, N. Ma, A. Wang, Y. Ran, T. Song, Y. Jiao, J. Liu, H. Zhou, W. Shi, B. He, D. Wang, Y. Li, M. Avdeev, S. Shi, Adv. Energy Mater. 2020, 10, 2001486.
- 12a) J. Yang, Z. Gao, T. Ferber, H. Zhang, C. Guhl, L. Yang, Y. Li, Z. Deng, P. Liu, C. Cheng, R. Che, W. Jaegermann, RenéHausbrand, Y. Huang, J. Mater. Chem. A 2020, 8, 7828; b) A. Sharafi, E. Kazyak, A. L. Davis, S. Yu, T. Thompson, D. J. Siegel, N. P. Dasgupta, J. Sakamoto, Chem. Mater. 2017, 29, 7961; c) X. Han, Y. Gong, K. K. Fu, X. He, G. T. Hitz, J. Dai, A. Pearse, B. Liu, H. Wang, G. Rubloff, Y. Mo, V. Thangadurai, E. D. Wachsman, L. Hu, Nat. Mater. 2017, 16, 572; d) T. Deng, X. Ji, Y. Zhao, L. Cao, S. Li, S. Hwang, C. Luo, P. Wang, H. Jia, X. Fan, X. Lu, D. Su, X. Sun, C. Wang, J. G. Zhang, Adv. Mater. 2020, 32, 2000030; e) J. Wen, Y. Huang, J. Duan, Y. Wu, W. Luo, L. Zhou, C. Hu, L. Huang, X. Zheng, W. Yang, Z. Wen, Y. Huang, ACS Nano 2019, 13, 14549; f) Y. Huang, B. Chen, J. Duan, F. Yang, T. Wang, Z. Wang, W. Yang, C. Hu, W. Luo, Y. Huang, Angew. Chem., Int. Ed. 2020, 59, 3699; g) X. Zhang, Q. Xiang, S. Tang, A. Wang, X. Liu, J. Luo, Nano Lett. 2020, 20, 2871; h) J. Meng, Y. Zhang, X. Zhou, M. Lei, C. Li, Nat. Commun. 2020, 11, 3716; i) C.-L. Tsai, T. Lan, C. Dellen, Y. Ling, Q. Ma, D. Fattakhova-Rohlfing, O. Guillon, F. Tietz, J. Power Sources 2020, 476, 228666.
- 13a) T. Nakamura, K. Amezawa, J. Kulisch, W. G. Zeier, J. Janek, ACS Appl. Mater. Interfaces 2019, 11, 19968; b) S. Wang, H. Xu, W. Li, A. Dolocan, A. Manthiram, J. Am. Chem. Soc. 2018, 140, 250.
- 14Y. Song, L. Yang, W. Zhao, Z. Wang, Y. Zhao, Z. Wang, Q. Zhao, H. Liu, F. Pan, Adv. Energy Mater. 2019, 9, 1900671.
- 15H. Liu, X.-B. Cheng, J.-Q. Huang, H. Yuan, Y. Lu, C. Yan, G.-L. Zhu, R. Xu, C.-Z. Zhao, L.-P. Hou, C. He, S. Kaskel, Q. Zhang, ACS Energy Lett. 2020, 5, 833.
- 16H. Gao, L. Xue, S. Xin, K. Park, J. B. Goodenough, Angew. Chem., Int. Ed. 2017, 56, 5541.
- 17a) Y. Wang, W. Li, G. Hu, Z. Peng, Y. Cao, H. Gao, K. Du, J. B. Goodenough, Chem. Mater. 2019, 31, 5214; b) C.-Y. Yu, J.-S. Park, H.-G. Jung, K.-Y. Chung, D. Aurbach, Y.-K. Sun, S.-T. Myung, Energy Environ. Sci. 2015, 8, 2019.