Unique Dual-Sites Boosting Overall CO2 Photoconversion by Hierarchical Electron Harvesters
Xingwang Zhu
School of the Environment and Safety Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, 212013 P. R. China
Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585 Singapore
Search for more papers by this authorYitao Cao
Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585 Singapore
Search for more papers by this authorCorresponding Author
Yanhua Song
School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212003 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorJinman Yang
School of the Environment and Safety Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, 212013 P. R. China
Search for more papers by this authorXiaojie She
Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077 P. R. China
Search for more papers by this authorZhao Mo
School of the Environment and Safety Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, 212013 P. R. China
Search for more papers by this authorYuanbin She
College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014 P. R. China
Search for more papers by this authorQing Yu
School of the Environment and Safety Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, 212013 P. R. China
Search for more papers by this authorXianglin Zhu
School of the Environment and Safety Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, 212013 P. R. China
Search for more papers by this authorJunjie Yuan
School of the Environment and Safety Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, 212013 P. R. China
Search for more papers by this authorHuaming Li
School of the Environment and Safety Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, 212013 P. R. China
Search for more papers by this authorCorresponding Author
Hui Xu
School of the Environment and Safety Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, 212013 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorXingwang Zhu
School of the Environment and Safety Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, 212013 P. R. China
Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585 Singapore
Search for more papers by this authorYitao Cao
Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585 Singapore
Search for more papers by this authorCorresponding Author
Yanhua Song
School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212003 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorJinman Yang
School of the Environment and Safety Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, 212013 P. R. China
Search for more papers by this authorXiaojie She
Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077 P. R. China
Search for more papers by this authorZhao Mo
School of the Environment and Safety Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, 212013 P. R. China
Search for more papers by this authorYuanbin She
College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014 P. R. China
Search for more papers by this authorQing Yu
School of the Environment and Safety Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, 212013 P. R. China
Search for more papers by this authorXianglin Zhu
School of the Environment and Safety Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, 212013 P. R. China
Search for more papers by this authorJunjie Yuan
School of the Environment and Safety Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, 212013 P. R. China
Search for more papers by this authorHuaming Li
School of the Environment and Safety Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, 212013 P. R. China
Search for more papers by this authorCorresponding Author
Hui Xu
School of the Environment and Safety Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, 212013 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Low selectivity and poor activity of photocatalytic CO2 reduction process are usually limiting factors for its applicability. Herein, a hierarchical electron harvesting system is designed on CoNiP hollow nano-millefeuille (CoNiP NH), which enables the charge enrichment on CoNi dual active sites and selective conversion of CO2 to CH4. The CoNiP serves as an electron harvester and photonic “black hole” accelerating the kinetics for CO2-catalyzed reactions. Moreover, the dual sites form from highly stable CoONiC intermediates, which thermodynamically not only lower the reaction energy barrier but also transform the reaction pathways, thus enabling the highly selective generation of CH4 from CO2. As an outcome, the CoNiP NH/black phosphorus with dual sites leads to a tremendously improved photocatalytic CH4 generation with a selectivity of 86.6% and an impressive activity of 38.7 µmol g−1 h−1.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
smll202103796-sup-0001-SuppMat.pdf1.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Y. Y. Birdja, E. Pérez-Gallent, M. C. Figueiredo, A. J. Göttle, F. Calle-Vallejo, M. T. M. Koper, Nat. Energy 2019, 4, 732.
- 2X. Li, J. Yu, M. Jaroniec, X. Chen, Chem. Rev. 2019, 119, 3962.
- 3X. Jiang, X. Nie, X. Guo, C. Song, J. G. Chen, Chem. Rev. 2020, 120, 7984.
- 4S. Das, J. Perez-Ramirez, J. Gong, N. Dewangan, K. Hidajat, B. C. Gates, S. Kawi, Chem. Soc. Rev. 2020, 49, 2937.
- 5J. Artz, T. E. Muller, K. Thenert, J. Kleinekorte, R. Meys, A. Sternberg, A. Bardow, W. Leitner, Chem. Rev. 2018, 118, 434.
- 6F. K. Kessler, Y. Zheng, D. Schwarz, C. Merschjann, W. Schnick, X. Wang, M. J. Bojdys, Nat. Rev. Mater. 2017, 2, 17030.
- 7G. Kupgan, L. J. Abbott, K. E. Hart, C. M. Colina, Chem. Rev. 2018, 118, 5488.
- 8J. Hu, L. Yu, J. Deng, Y. Wang, K. Cheng, C. Ma, Q. Zhang, W. Wen, S. Yu, Y. Pan, J. Yang, H. Ma, F. Qi, Y. Wang, Y. Zheng, M. Chen, R. Huang, S. Zhang, Z. Zhao, J. Mao, X. Meng, Q. Ji, G. Hou, X. Han, X. Bao, Y. Wang, D. Deng, Nat. Catal. 2021, 4, 242.
- 9A. Wagner, C. D. Sahm, E. Reisner, Nat. Catal. 2020, 3, 775.
- 10V. Kumaravel, J. Bartlett, S. C. Pillai, ACS Energy Lett. 2020, 5, 486.
- 11Y. Ji, Y. Luo, ACS Catal. 2016, 6, 2018.
- 12Y. Lu, X. Liu, H. Liu, Y. Wang, P. Liu, X. Zhu, Y. Zhang, H. Zhang, G. Wang, Y. Lin, H. Diao, H. Zhao, Small Struct. 2020, 1, 2000025.
10.1002/sstr.202000025 Google Scholar
- 13Z. B. Fang, T. T. Liu, J. Liu, S. Jin, X. P. Wu, X. Q. Gong, K. Wang, Q. Yin, T. F. Liu, R. Cao, H. C. Zhou, J. Am. Chem. Soc. 2020, 142, 12515.
- 14B. H. Lee, S. Park, M. Kim, A. K. Sinha, S. C. Lee, E. Jung, W. J. Chang, K. S. Lee, J. H. Kim, S. P. Cho, H. Kim, K. T. Nam, T. Hyeon, Nat. Mater. 2019, 18, 620.
- 15J. Di, B. Lin, B. Tang, S. Guo, J. Zhou, Z. Liu, Small Struct. 2021, 2100046, https://doi.org/10.1002/sstr.202100046.
10.1002/sstr.202100046 Google Scholar
- 16R. Chen, S. Pang, H. An, J. Zhu, S. Ye, Y. Gao, F. Fan, C. Li, Nat. Energy 2018, 3, 655.
- 17S. Wang, X. Han, Y. Zhang, N. Tian, T. Ma, H. Huang, Small Struct. 2020, 2, 2000061.
- 18W. Zhou, K. Cheng, J. Kang, C. Zhou, V. Subramanian, Q. Zhang, Y. Wang, Chem. Soc. Rev. 2019, 48, 3193.
- 19Z. Mo, X. Zhu, Z. Jiang, Y. Song, D. Liu, H. Li, X. Yang, Y. She, Y. Lei, S. Yuan, H. Li, L. Song, Q. Yan, H. Xu, Appl. Catal., B 2019, 256, 117854.
- 20Y. Liu, D. Deng, X. Bao, Chem 2020, 6, 2497.
- 21S. Luo, H. Lin, Q. Wang, X. Ren, D. Hernandez-Pinilla, T. Nagao, Y. Xie, G. Yang, S. Li, H. Song, M. Oshikiri, J. Ye, J. Am. Chem. Soc. 2021, 143, 12145.
- 22X. Li, Y. Sun, J. Xu, Y. Shao, J. Wu, X. Xu, Y. Pan, H. Ju, J. Zhu, Y. Xie, Nat. Energy 2019, 4, 690.
- 23R. Long, Y. Li, Y. Liu, S. Chen, X. Zheng, C. Gao, C. He, N. Chen, Z. Qi, L. Song, J. Jiang, J. Zhu, Y. Xiong, J. Am. Chem. Soc. 2017, 139, 4486.
- 24G. Chen, R. Gao, Y. Zhao, Z. Li, G. I. N. Waterhouse, R. Shi, J. Zhao, M. Zhang, L. Shang, G. Sheng, X. Zhang, X. Wen, L. Z. Wu, C. H. Tung, T. Zhang, Adv. Mater. 2018, 30, 1704663.
- 25Z. Chen, Y. Song, J. Cai, X. Zheng, D. Han, Y. Wu, Y. Zang, S. Niu, Y. Liu, J. Zhu, X. Liu, G. Wang, Angew. Chem., Int. Ed. 2018, 57, 5076.
- 26M. Zeng, Y. Xiao, J. Liu, K. Yang, L. Fu, Chem. Rev. 2018, 118, 6236.
- 27A. Hirsch, F. Hauke, Angew. Chem., Int. Ed. 2018, 57, 4338.
- 28Z. Mo, J. Di, P. Yan, C. Lv, X. Zhu, D. Liu, Y. Song, C. Liu, Q. Yu, H. Li, Y. Lei, H. Xu, Q. Yan, Small 2020, 16, 2003914.
- 29A. Autere, H. Jussila, Y. Dai, Y. Wang, H. Lipsanen, Z. Sun, Adv. Mater. 2018, 30, 1705963.
- 30J. Liu, L. Xu, Y. Deng, X. Zhu, J. Deng, J. Lian, J. Wu, J. Qian, H. Xu, S. Yuan, H. Li, P. M. Ajayan, J. Mater. Chem. A 2019, 7, 14291.
- 31X. Ma, M. R. Zachariah, C. D. Zangmeister, Nano Lett. 2012, 12, 486.
- 32V. Chabot, D. Higgins, A. Yu, X. Xiao, Z. Chen, J. Zhang, Energy Environ. Sci. 2014, 7, 1564.
- 33Z. Lai, Y. Chen, C. Tan, X. Zhang, H. Zhang, Chem 2016, 1, 59.
- 34J. Liu, H. Xu, H. Li, Y. Song, J. Wu, Y. Gong, L. Xu, S. Yuan, H. Li, P. M. Ajayan, Appl. Catal., B 2019, 243, 151.
- 35Y. Zhao, H. Wang, H. Huang, Q. Xiao, Y. Xu, Z. Guo, H. Xie, J. Shao, Z. Sun, W. Han, X. F. Yu, P. Li, P. K. Chu, Angew. Chem., Int. Ed. 2016, 55, 5003.
- 36X. Zhu, J. Yang, X. She, Y. Song, J. Qian, Y. Wang, H. Xu, H. Li, Q. Yan, J. Mater. Chem. A 2019, 7, 5209.
- 37C. Han, J. Li, Z. Ma, H. Xie, G. I. N. Waterhouse, L. Ye, T. Zhang, Sci. China Mater. 2018, 61, 1159.
- 38W. Lei, G. Liu, J. Zhang, M. Liu, Chem. Soc. Rev. 2017, 46, 3492.
- 39C. Hao, F. Wen, J. Xiang, S. Yuan, B. Yang, L. Li, W. Wang, Z. Zeng, L. Wang, Z. Liu, Y. Tian, Adv. Funct. Mater. 2016, 26, 2016.
- 40Y. Guo, X. Hong, Y. Wang, Q. Li, J. Meng, R. Dai, X. Liu, L. He, L. Mai, Adv. Funct. Mater. 2019, 29, 1809004.
- 41Q. Liu, Q. Cao, H. Bi, C. Liang, K. Yuan, W. She, Y. Yang, R. Che, Adv. Mater. 2016, 28, 486.
- 42E. Hu, Y. Feng, J. Nai, D. Zhao, Y. Hu, X. W. Lou, Energy Environ. Sci. 2018, 11, 872.
- 43X. Xiao, C.-T. He, S. Zhao, J. Li, W. Lin, Z. Yuan, Q. Zhang, S. Wang, L. Dai, D. Yu, Energy Environ. Sci. 2017, 10, 893.
- 44Y.-J. Yuan, Z.-K. Shen, S. Song, J. Guan, L. Bao, L. Pei, Y. Su, S. Wu, W. Bai, Z.-T. Yu, Z. Ji, Z. Zou, ACS Catal. 2019, 9, 7801.
- 45W. Yang, L. Zhang, J. Xie, X. Zhang, Q. Liu, T. Yao, S. Wei, Q. Zhang, Y. Xie, Angew. Chem., Int. Ed. 2016, 55, 6716.
- 46L. Liang, H. Cheng, F. Lei, J. Han, S. Gao, C. Wang, Y. Sun, S. Qamar, S. Wei, Y. Xie, Angew. Chem., Int. Ed. 2015, 54, 12004.
- 47X. Guan, W. Gao, Q. Jiang, J. Mater. Chem. A 2021, 9, 4770.
- 48Z.-F. Huang, J. Song, Y. Du, S. Xi, S. Dou, J. M. V. Nsanzimana, C. Wang, Z. J. Xu, X. Wang, Nat. Energy 2019, 4, 329.
- 49Y. Wang, X. Liu, X. Han, R. Godin, J. Chen, W. Zhou, C. Jiang, J. F. Thompson, K. B. Mustafa, S. A. Shevlin, J. R. Durrant, Z. Guo, J. Tang, Nat. Commun. 2020, 11, 2531.
- 50X. She, H. Xu, L. Li, Z. Mo, X. Zhu, Y. Yu, Y. Song, J. Wu, J. Qian, S. Yuan, H. Li, Appl. Catal., B 2019, 245, 477.
- 51Z. Mo, H. Xu, Z. Chen, X. She, Y. Song, J. Lian, X. Zhu, P. Yan, Y. Lei, S. Yuan, H. Li, Appl. Catal., B 2019, 241, 452.
- 52J. Yi, H. Li, Y. Gong, X. She, Y. Song, Y. Xu, J. Deng, S. Yuan, H. Xu, H. Li, Appl. Catal., B 2019, 243, 330.
- 53X. Zhu, H. Ji, J. Yi, J. Yang, X. She, P. Ding, L. Li, J. Deng, J. Qian, H. Xu, H. Li, Ind. Eng. Chem. Res. 2018, 57, 17394.
- 54X. Zhu, S. Huang, Q. Yu, Y. She, J. Yang, G. Zhou, Q. Li, X. She, J. Deng, H. Li, H. Xu, Appl. Catal., B 2020, 269, 118760.
- 55M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann, Chem. Rev. 1995, 95, 69.
- 56P. Peng, L. Shi, F. Huo, C. Mi, X. Wu, S. Zhang, Z. Xiang, Sci. Adv. 2019, 5, eaaw2322.
- 57L. Wan, Q. Zhou, X. Wang, T. E. Wood, L. Wang, P. N. Duchesne, J. Guo, X. Yan, M. Xia, Y. F. Li, A. A. Jelle, U. Ulmer, J. Jia, T. Li, W. Sun, G. A. Ozin, Nat. Catal. 2019, 2, 889.
- 58X. Zhu, J. Yang, X. Zhu, J. Yuan, M. Zhou, X. She, Q. Yu, Y. Song, Y. She, Y. Hua, H. Li, H. Xu, Chem. Eng. J. 2021, 422, 129888.
- 59X. She, X. Zhu, J. Yang, Y. Song, Y. She, D. Liu, J. Wu, Q. Yu, H. Li, Z. Liu, P. M. Ajayan, H. Xu, Nano Energy 2021, 84, 105869.
- 60W. Wang, C. Deng, S. Xie, Y. Li, W. Zhang, H. Sheng, C. Chen, J. Zhao, J. Am. Chem. Soc. 2021, 143, 2984.
- 61K. Ye, Z. Zhou, J. Shao, L. Lin, D. Gao, N. Ta, R. Si, G. Wang, X. Bao, Angew. Chem., Int. Ed. 2020, 59, 4814.
- 62T. C. Chou, C. C. Chang, H. L. Yu, W. Y. Yu, C. L. Dong, J. J. Velasco-Velez, C. H. Chuang, L. C. Chen, J. F. Lee, J. M. Chen, H. L. Wu, J. Am. Chem. Soc. 2020, 142, 2857.
- 63J. Di, C. Chen, S. Z. Yang, S. Chen, M. Duan, J. Xiong, C. Zhu, R. Long, W. Hao, Z. Chi, H. Chen, Y. X. Weng, J. Xia, L. Song, S. Li, H. Li, Z. Liu, Nat. Commun. 2019, 10, 2840.