N,N-Dimethylformamide-Assisted Shape Evolution of Highly Uniform and Shape-Pure Colloidal Copper Nanocrystals
Da Won Lee
School of Integrative Engineering, Chung-Ang University, Seoul, 06974 Republic of Korea
Search for more papers by this authorHo Young Woo
School of Integrative Engineering, Chung-Ang University, Seoul, 06974 Republic of Korea
Search for more papers by this authorDong Hyun David Lee
Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
Search for more papers by this authorMyung-Chul Jung
Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
Search for more papers by this authorDonguk Lee
School of Integrative Engineering, Chung-Ang University, Seoul, 06974 Republic of Korea
Search for more papers by this authorMinJi Lee
School of Integrative Engineering, Chung-Ang University, Seoul, 06974 Republic of Korea
Search for more papers by this authorJong Bae Kim
School of Integrative Engineering, Chung-Ang University, Seoul, 06974 Republic of Korea
Search for more papers by this authorJi Yeon Chae
School of Integrative Engineering, Chung-Ang University, Seoul, 06974 Republic of Korea
Search for more papers by this authorCorresponding Author
Myung Joon Han
Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
E-mail: [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Taejong Paik
School of Integrative Engineering, Chung-Ang University, Seoul, 06974 Republic of Korea
E-mail: [email protected], [email protected]
Search for more papers by this authorDa Won Lee
School of Integrative Engineering, Chung-Ang University, Seoul, 06974 Republic of Korea
Search for more papers by this authorHo Young Woo
School of Integrative Engineering, Chung-Ang University, Seoul, 06974 Republic of Korea
Search for more papers by this authorDong Hyun David Lee
Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
Search for more papers by this authorMyung-Chul Jung
Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
Search for more papers by this authorDonguk Lee
School of Integrative Engineering, Chung-Ang University, Seoul, 06974 Republic of Korea
Search for more papers by this authorMinJi Lee
School of Integrative Engineering, Chung-Ang University, Seoul, 06974 Republic of Korea
Search for more papers by this authorJong Bae Kim
School of Integrative Engineering, Chung-Ang University, Seoul, 06974 Republic of Korea
Search for more papers by this authorJi Yeon Chae
School of Integrative Engineering, Chung-Ang University, Seoul, 06974 Republic of Korea
Search for more papers by this authorCorresponding Author
Myung Joon Han
Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
E-mail: [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Taejong Paik
School of Integrative Engineering, Chung-Ang University, Seoul, 06974 Republic of Korea
E-mail: [email protected], [email protected]
Search for more papers by this authorAbstract
In this paper, the N,N-dimethylformamide (DMF)-assisted shape evolution of highly uniform and shape-pure copper nanocrystals (Cu NCs) is presented for the first time. Colloidal Cu NCs are synthesized via the disproportionation reaction of copper (I) bromide in the presence of a non-polar solvent mixture. It is observed that the shape of Cu NCs is systematically controlled by the addition of different amounts of DMF to the reaction mixture in high-temperature reaction conditions while maintaining a high size uniformity and shape purity. With increasing amount of DMF in the reaction mixture, the morphology of the Cu NCs change from a cube enclosed by six {100} facets, to a sphere with mixed surface facets, and finally, to an octahedron enclosed by eight {111} facets. The origin of this shape evolution is understood via first-principles density functional theory calculations, which allows the study of the change in the relative surface stability according to surface-coordinating adsorbates. Further, the shape-dependent plasmonic properties are systematically investigated with highly uniform and ligand-exchanged colloidal Cu NCs dispersed in acetonitrile. Finally, the facet-dependent electrocatalytic activities of the shape-controlled Cu NCs are investigated to reveal the activities of the highly uniform and shape-pure Cu NCs in the methanol oxidation reaction.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
smll202103302-sup-0001-SuppMat.pdf1.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1A. R. Rathmell, S. M. Bergin, Y. L. Hua, Z. Y. Li, B. J. Wiley, Adv. Mater. 2010, 22, 3558.
- 2M. B. Gawande, A. Goswami, F.-X. Felpin, T. Asefa, X. Huang, R. Silva, X. Zou, R. Zboril, R. S. Varm, Chem. Rev. 2016, 116, 3722.
- 3I. Pastoriza-Santos, A. Sánchez-Iglesias, B. Rodríguez-González, L. M. Liz-Marzán, Small 2009, 5, 440.
- 4L. Lu, Y. Shen, X. Chen, L. Qian, K. Lu, Science 2004, 304, 422.
- 5H. Heli, M. Jafarian, M. Mahjani, F. Gobal, Electrochim. Acta 2004, 49, 4999.
- 6D. Kim, C. S. Kley, Y. Li, P. Yang, Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 10560.
- 7C. W. Lee, C. Kim, B. K. Min, Nano Converg. 2019, 6, 8.
- 8G. H. Chan, J. Zhao, E. M. Hicks, G. C. Schatz, R. P. V. Duyne, Nano Lett. 2007, 7, 1947.
- 9Z. Niu, F. Cui, Y. Yu, N. Becknell, Y. Sun, G. Khanarian, D. Kim, L. Dou, A. Dehestani, K. Schierle-Arndt, P. Yang, J. Am. Chem. Soc. 2017, 139, 7348.
- 10I. E. Stewart, S. Ye, Z. Chen, P. F. Flowers, B. J. Wiley, Chem. Mater. 2015, 27, 7788.
- 11M. Mohl, D. Dobo, A. Kukovecz, Z. Konya, K. Kordas, J. Wei, R. Vajtai, P. M. Ajayan, J. Phys. Chem. C 2011, 115, 9403.
- 12A. Sarkar, A. Manthiram, J. Phys. Chem. C 2010, 114, 4725.
- 13S. Luo, P. K. Shen, ACS Nano 2016, 11, 11946.
- 14L.-M. Lyu, Y.-C. Kao, D. A. Cullen, B. T. Sneed, Y.-C. Chuang, C.-H. Kuo, Chem. Mater. 2017, 29, 5681.
- 15X. Yu, D. Wang, Q. Peng, Y. Li, Chem. Commun. 2011, 47, 8094.
- 16J. Ding, X. Zhu, L. Bu, J. Yao, J. Guo, S. Guo, X. Huang, Chem. Commun. 2015, 51, 9722.
- 17T. Liu, K. Wang, Q. Yuan, Z. Shen, Y. Wang, Q. Zhang, X. Wang, Nanoscale 2017, 9, 2963.
- 18C. Liu, J. Qian, Y. Ye, H. Zhou, C.-J. Sun, C. Sheehan, Z. Zhang, G. Wan, Y.-S. Liu, J. Guo, Nat. Catal. 2021, 4, 36.
- 19F. Cui, Y. Yu, L. Dou, J. Sun, Q. Yang, C. Schildknecht, K. Schierle-Arndt, P. Yang, Nano Lett. 2015, 15, 7610.
- 20H. S. Jeon, S. Kunze, F. Scholten, B. R. Cuenya, ACS Catal. 2018, 8, 531.
- 21N.-T. Suen, Z.-R. Kong, C.-S. Hsu, H.-C. Chen, C.-W. Tung, Y.-R. Lu, C.-L. Dong, C.-C. Shen, J.-C. Chung, H. M. Chen, ACS Catal. 2019, 9, 5217.
- 22W. Luc, X. Fu, J. Shi, J.-J. Lv, M. Jouny, B. H. Ko, Y. Xu, Q. Tu, X. Hu, J. Wu, Q. Yue, Y. Liu, F. Jiao, Y. Kang, Nat. Catal. 2019, 2, 423.
- 23C. Salzemann, I. Lisiecki, A. Brioude, J. Urban, M.-P. Pileni, J. Phys. Chem. B 2004, 108, 13242.
- 24F. Cui, L. Dou, Q. Yang, Y. Yu, Z. Niu, Y. Sun, H. Liu, A. Dehestani, K. Schierle-Arndt, P. Yang, J. Am. Chem. Soc. 2017, 139, 3027.
- 25M. S. Jin, G. n. He, H. Zhang, J. Zeng, Z. x. Xie, Y. n. Xia, Angew. Chem., Int. Ed. 2011, 50, 10560.
- 26C. Salzemann, J. Urban, I. Lisiecki, M. P. Pileni, Adv. Funct. Mater. 2005, 15, 1277.
- 27Z. Wang, Z. Chen, H. Zhang, Z. Zhang, H. Wu, M. Jin, C. Wu, D. Yang, Y. Yin, ACS Nano 2015, 9, 3307.
- 28M. Luo, A. Ruditskiy, H. C. Peng, J. Tao, L. Figueroa-Cosme, Z. He, Y. Xia, Adv. Funct. Mater. 2016, 26, 1209.
- 29Z. Lyu, M. Xie, K. D. Gilroy, Z. D. Hood, M. Zhao, S. Zhou, J. Liu, Y. Xia, Chem. Mater. 2018, 30, 6469.
- 30H. Guo, X. Liu, Q. Xie, L. Wang, D.-L. Peng, P. S. Branco, M. B. Gawande, RSC Adv. 2013, 3, 19812.
- 31H. Guo, Y. Chen, M. B. Cortie, X. Liu, Q. Xie, X. Wang, D.-L. Peng, J. Phys. Chem. C 2014, 118, 9801.
- 32B. H. Kim, N. Lee, H. Kim, K. An, Y. I. Park, Y. Choi, K. Shin, Y. Lee, S. G. Kwon, H. B. Na, J.-G. Park, T.-Y. Ahn, Y.-W. Kim, W. K. Moon, S. H. Choi, T. Hyeon, J. Am. Chem. Soc. 2011, 133, 12624.
- 33S.-C. Lu, M.-C. Hsiao, M. Yorulmaz, L.-Y. Wang, P.-Y. Yang, S. Link, W.-S. Chang, H.-Y. Tuan, Chem. Mater. 2015, 27, 8185.
- 34M. Strach, V. Mantella, J. R. Pankhurst, P. Iyengar, A. Loiudice, S. Das, C. m. Corminboeuf, W. v. Beek, R. Buonsanti, J. Am. Chem. Soc. 2019, 141, 16312.
- 35I. Pastoriza-Santos, L. M. Liz-Marzán, Adv. Funct. Mater. 2009, 19, 679.
- 36S. Zhou, M. Zhao, T.-H. Yang, Y. Xia, Mater. Today 2019, 22, 108.
- 37P. Yang, X. Yuan, H. Hu, Y. Liu, H. Zheng, D. Yang, L. Chen, M. Cao, Y. Xu, Y. Min, Adv. Funct. Mater. 2018, 28, 1704774.
- 38G. Xu, R. Si, J. Liu, L. Zhang, X. Gong, R. Gao, B. Liu, J. Zhang, J. Mater. Chem. A 2018, 6, 12759.
- 39D. B. Pedersen, S. Wang, S. H. Liang, J. Phys. Chem. C 2008, 112, 8819.
- 40G. D. M. R. Dabera, M. Walker, A. M. Sanchez, H. J. Pereira, R. Beanland, R. A. Hatton, Nat. Commun. 2017, 8, 1894.
- 41I. Pastoriza-Santos, L. M. Liz-Marzán, Langmuir 1999, 15, 948.
- 42B. M. Rosen, X. Jiang, C. J. Wilson, N. H. Nguyen, M. J. Monteiro, V. Percec, J. Polym. Sci., Part A: Polym. Chem. 2009, 47, 5606.
- 43M. A. Kraus, Synthesis 1973, 6, 361.
10.1055/s-1973-22217 Google Scholar
- 44S. S. Tafreshi, A. Roldan, N. H. de Leeuw, J. Phys. Chem. C 2014, 118, 26103.
- 45M.-P. Pileni, C. R. Chim. 2003, 6, 965.
- 46Y. Xia, Y. Xiong, B. Lim, S. E. Skrabalak, Angew. Chem., Int. Ed. 2008, 48, 60.
- 47D. Liu, X. Xu, Y. Du, X. Qin, Y. Zhang, C. Ma, S. Wen, W. Ren, E. M. Goldys, J. A. Piper, Nat. Commun. 2016, 7, 10254.
- 48J. R. Pankhurst, P. Iyengar, A. Loiudice, M. Mensi, R. Buonsanti, Chem. Sci. 2020, 11, 9296.
- 49L. Vitos, A. Ruban, H. L. Skriver, J. Kollar, Surf. Sci. 1998, 411, 186.
- 50H. L. Skriver, N. M. Rosengaard, Phys. Rev. B 1992, 46, 7157.
- 51T. Fishlock, J. Pethica, R. Egdell, Surf. Sci. 2000, 445, L47.
- 52B. V. Andryushechkin, V. V. Cherkez, T. V. Pavlova, G. M. Zhidomirov, K. N. Eltsov, Surf. Sci. 2013, 608, 135.
- 53R. G. Jones, M. Kadodwala, Surf. Sci. 1997, 370, L219.
- 54I. A. Suleiman, M. W. Radny, M. J. Gladys, P. V. Smith, J. C. Mackie, E. M. Kennedy, B. Z. Dlugogorski, J. Phys. Chem. C 2011, 115, 13412.
- 55A. Migani, F. Illas, J. Phys. Chem. B 2006, 110, 11894.
- 56I. T. McCrum, S. A. Akhade, M. J. Janik, Electrochim. Acta 2015, 173, 302.
- 57L. Zhang, H. Jing, G. Boisvert, J. Z. He, H. Wang, ACS Nano 2012, 6, 3514.
- 58C. C. Crane, F. Wang, J. Li, J. Tao, Y. Zhu, J. Chen, J. Phys. Chem. B 2017, 121, 5684.
- 59A. Tao, P. Sinsermsuksakul, P. Yang, Nat. Nanotechnol. 2007, 2, 435.
- 60A. Tao, P. Sinsermsuksakul, P. Yang, Angew. Chem., Int. Ed. 2006, 45, 4597.
- 61S. Jeong, Y. Liu, Y. Zhong, X. Zhan, Y. Li, Y. Wang, P. M. Cha, J. Chen, X. Ye, Nano Lett. 2020, 20, 7263.
- 62P. Ferrin, M. Mavrikakis, J. Am. Chem. Soc. 2009, 131, 14381.
- 63L.-P. Xia, P. Guo, Y. Wang, S.-Q. Ding, J.-B. He, J. Power Sources 2014, 262, 232.
- 64Z. Xu, C. Shen, Y. Hou, H. Gao, S. Sun, Chem. Mater. 2009, 21, 1778.
- 65X. Liu, Y. Sui, X. Yang, Y. Wei, B. Zou, ACS Appl. Mater. Interfaces 2016, 8, 26886.
- 66W. S. Lee, S. Jeon, S. J. Oh, Nano Converg. 2019, 6, 10.
- 67D. M. Balazs, D. N. Dirin, H.-H. Fang, L. Protesescu, G. H. ten Brink, B. J. Kooi, M. V. Kovalenko, M. A. Loi, ACS Nano 2015, 9, 11951.
- 68J. W. Hong, Y. Kim, Y. Kwon, S. W. Han, Chem. - Asian J. 2016, 11, 2224
- 69A. P. Periasamy, J. Liu, H.-M. Lin, H.-T. Chang, J. Mater. Chem. A 2013, 1, 5973.
- 70G. Kresse, D. Joubert, Phys. Rev. B 1999, 59, 1758.
- 71G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169.
- 72J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
- 73M. Straumanis, L. Yu, Acta Crystallogr., Sect. A: Found. Adv. 1969, 25, 676.
- 74S. Grimme, J. Comput. Chem. 2006, 27, 1787.