Highly Sensitive Ultraviolet and Visible Wavelength Sensor Composed of Two Identical Perovskite Nanofilm Photodetectors
Feng-Xia Liang
School of Materials Science and Engineering and Anhui Provincial Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, 230009 China
Search for more papers by this authorRong-Yu Fan
School of Materials Science and Engineering and Anhui Provincial Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, 230009 China
Search for more papers by this authorJing-Yue Li
School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei, 230009 China
Search for more papers by this authorCan Fu
School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei, 230009 China
Search for more papers by this authorJing-Jing Jiang
School of Materials Science and Engineering and Anhui Provincial Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, 230009 China
Search for more papers by this authorTing Fang
School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei, 230009 China
Search for more papers by this authorDi Wu
School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052 China
Search for more papers by this authorCorresponding Author
Lin-Bao Luo
School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei, 230009 China
E-mail: [email protected]
Search for more papers by this authorFeng-Xia Liang
School of Materials Science and Engineering and Anhui Provincial Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, 230009 China
Search for more papers by this authorRong-Yu Fan
School of Materials Science and Engineering and Anhui Provincial Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, 230009 China
Search for more papers by this authorJing-Yue Li
School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei, 230009 China
Search for more papers by this authorCan Fu
School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei, 230009 China
Search for more papers by this authorJing-Jing Jiang
School of Materials Science and Engineering and Anhui Provincial Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, 230009 China
Search for more papers by this authorTing Fang
School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei, 230009 China
Search for more papers by this authorDi Wu
School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052 China
Search for more papers by this authorCorresponding Author
Lin-Bao Luo
School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei, 230009 China
E-mail: [email protected]
Search for more papers by this authorAbstract
This work reports the design of a wavelength sensor composed of two identical perovskite (FA0.85Cs0.15PbI3) photodetectors (PDs) that are capable of discriminating incident wavelength in a quantitative way. Due to strong wavelength-dependent absorption coefficient, the penetration depth of the photons in the FA0.85Cs0.15PbI3 nanofilms increases with the increasing wavelength, leading to a gradual decrease of photo-generated current for PD1, but an increase of photocurrent in PD2, according to the theoretical simulation of Technology Computer Aided Design. This special evolution of photo-generated current as a function of wavelength facilitates the quantitative determination of the wavelength since the current ratio of both PDs monotonously decreases with the increase of wavelength from 265 to 810 nm. The average absolute error and the average relative error are estimated to be 7.6 nm and 1.68%, respectively, which are much better than other semiconductors materials-based wavelength sensors previously reported. It is believed that the present perovskite film-based wavelength sensor will have potential application in the future color/spectrum optoelectronic devices.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
smll202102987-Sup-0001-SuppMat.pdf815.8 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1A. Sadhanala, S. Ahmad, B. D. Zhao, N. Giesbrecht, P. M. Pearce, F. Deschler, R. L. Z. Hoye, K. C. Gödel, T. Bein, P. Docampo, S. E. Dutton, M. F. L. D. Volder, R. H. Friend, Nano Lett. 2015, 15, 6095.
- 2J. C. Sun, J. Wu, X. Tong, F. Lin, Y. N. Wang, Z. M. M. Wang, Adv. Sci. 2018, 5, 1700780.
- 3W. Tian, H. P. Zhou, L. Li, Small 2017, 13, 1702107.
- 4W. Zhang, M. Anaya, G. Lozano, M. E. Calvo, M. B. Johnston, H. Míguez, H. J. Snaith, Nano Lett. 2015, 15, 1698.
- 5Y. Q. Zhang, Y. Ma, Y. X. Wang, X. D. Zhang, C. T. Zuo, L. Shen, L. M. Ding, Adv. Mater. 2021, 33, 2006691.
- 6J. J. Yoo, G. Seo, M. R. Chua, T. G. Park, Y. Lu, F. Rotermund, Y. K. Kim, C. S. Moon, N. J. Jeon, J. P. Correa-Baena, V. Bulovic, S. S. Shin, M. G. Bawendi, J. Seo, Nature 2021, 590, 587.
- 7J. Xing, F. Yan, Y. Zhao, S. Chen, H. Yu, Q. Zhang, R. Zeng, H. V. Demir, X. Sun, A. Huan, Q. Xiong, ACS Nano 2016, 10, 6623.
- 8S. A. Veldhuis, P. P. Boix, N. Yantara, M. Li, T. C. Sum, N. Mathews, S. G. Mhaisalkar, Adv. Mater. 2016, 28, 6804.
- 9Z. Li, J. Moon, A. Gharajeh, R. Haroldson, R. Hawkins, W. Hu, A. Zakhidov, Q. Gu, ACS Nano 2018, 12, 10968.
- 10W. Hu, W. Huang, S. Yang, X. Wang, Z. Jiang, X. Zhu, H. Zhou, H. Liu, Q. Zhang, X. Zhuang, J. Yang, D. H. Kim, A. Pan, Adv. Mater. 2017, 29, 1703256.
- 11J. Liu, F. J. Liu, H. N. Liu, R. Hou, J. Y. Yue, J. Z. Cai, Z. S. Peng, J. Impundu, L. M. Xie, Y. J. Li, L. F. Sun, Small 2020, 16, 1906185.
- 12M. N Yao, J. Z. Jiang, D. Y. Xin, Y. Ma, W. Wei, X. J. Zheng, L. Shen, Nano Lett. 2021, 21, 3947.
- 13J. Xue, Z. Zhu, X. Xu, Y. Gu, S. Wang, L. Xu, Y. Zou, J. Song, H. Zeng, Q. Chen, Nano Lett. 2018, 18, 7628.
- 14H. Wang, H. Liu, Q. Zhao, Z. Ni, Y. Zou, J. Yang, L. Wang, Y. Sun, Y. Guo, W. Hu, Y. Liu, Adv. Mater. 2017, 29, 1701772.
- 15J. Jang, Y. G. Park, E. Y. Cha, S. Y. Ji, H. B. Hwang, G. G. Kim, J. H. Jin, J. U. Park, Adv. Mater. 2021, 2101093.
- 16J. Y. Sung, C. W. Chow, C. H. Yeh, Opt. Express 2014, 22, 7538.
- 17N. Kumar, N. Lourenço, D. Terra, L. N. Alves, R. L. Aguiar, 2012 IEEE Intelligent Vehicles Symposium, IEEE, Piscataway, NJ 2012, pp. 748–753.
10.1109/IVS.2012.6232282 Google Scholar
- 18A. M. Cailean, B. Cagneau, L. Chassagne, M. Dimian, V. J. I. S. J. Popa, IEEE Sens. J. 2015, 15, 4632.
- 19X. Zhu, L. Bian, H. Fu, L. Wang, B. Zou, Q. Dai, J. Zhang, H. Zhong, Light: Sci. Appl. 2020, 9, 73.
- 20U. Kurokawa, B. I. Choi, C. C. Chang, IEEE Sens. J. 2011, 11, 1556.
- 21Z. Yang, T. Albrow-Owen, H. Cui, J. Alexander-Webber, F. Gu, X. Wang, T. C. Wu, M. Zhuge, C. Williams, P. J. S. Wang, Science 2019, 365, 1017.
- 22J. H. Lu, M. T. Cheng, H. L. Hsu, S. W. Liu, C. P. Chen, Adv. Funct. Mater. 2020, 30, 2002503.
- 23M. I. Hossain, H. A. Khan, M. Kozawa, W. Qarony, A. Salleo, J. Y. Hardeberg, H. Fujiwara, Y. H. Tsang, D. Knipp, ACS Appl. Mater. Interfaces 2020, 12, 47831.
- 24X. Wu, B. Zhou, J. Zhou, Y. Chen, Y. Chu, J. Huang, Small 2018, 14, 1800527.
- 25S. Yakunin, Y. Shynkarenko, D. N. Dirin, I. Cherniukh, M. V. Kovalenko, NPG Asia Mater. 2017, 9, 431.
- 26Q. Lin, A. Armin, P. L. Burn, P. Meredith, Nat. Photonics 2015, 9, 687.
- 27W. Qarony, M. Kozawa, H. A. Khan, M. I. Hossain, A. Salleo, Y. H. Tsang, J. Y. Hardeberg, H. Fujiwara, D. Knipp, Adv. Mater. Interfaces 2020, 7, 2000459.
- 28H. Sun, W. Tian, X. Wang, K. Deng, J. Xiong, L. Li, Adv. Mater. 2020, 32, 1908108.
- 29L. B. Luo, G. A. Wu, Y. Gao, L. Liang, C. Xie, Z. X. Zhang, X. W. Tong, T. Wang, F. X. Liang, Adv. Opt. Mater. 2019, 1900272.
- 30C. Y. Wu, Z. Wang, L. Liang, T. Gui, W. Zhong, R. C. Du, C. Xie, L. Wang, L. B. Luo, Small 2019, 15, 1900730.
- 31F. X. Liang, J. Z. Wang, Z. X. Zhang, Y. Y. Wang, Y. Gao, L. B. Luo, Adv. Opt. Mater. 2017, 5, 1700654.
- 32D. Knipp, R. A. Street, H. Stiebig, M. Krause, J.-P. Lu, S. Ready, J. Ho, Sens. Actuators, A 2006, 128, 333.
- 33F. X. Liang, L. Liang, X. Y. Zhao, L. B. Luo, Y. H. Liu, X. W. Tong, Z. X. Zhang, J. C. A. Huang, Adv. Opt. Mater. 2019, 7, 1801392.
- 34Z. Li, M. Yang, J. S. Park, S. H. Wei, J. J. Berry, K. Zhu, Chem. Mater. 2015, 28, 284.
- 35H. Fujiwara, M. Kato, M. Tamakoshi, T. Miyadera, M. Chikamatsu, Phys. Status Solidi A 2018, 215.
- 36C. Y. Wu, H. Zhu, M. Wang, J. Kang, C. Xie, L. Wang, L. B. Luo, J. Mater. Chem. C 2020, 8, 5375.
- 37Z. X. Zhang, C. Li, Y. Lu, X. W. Tong, F. X. Liang, X. Y. Zhao, D. Wu, C. Xie, L. B. Luo, J. Phys. Chem. Lett. 2019, 10, 5343.
- 38C. Xie, P. You, Z. Liu, L. Li, F. Yan, Light: Sci. Appl. 2017, 6, 17023.
- 39M. Grundmann, Physics of Semiconductors, Springer-Verlag, Berlin 2010.
10.1007/978-3-642-13884-3 Google Scholar
- 40D. A. Neamen, Semiconductor Physics and Devices: Basic Principles, McGraw-Hill, New York, NY 2012.
- 41A. Polzer, W. Gaberl, H. Zimmermann, Electron. Lett. 2011, 47, 614.