Integrated, Highly Flexible, and Tailorable Thermoelectric Type Temperature Detectors Based on a Continuous Carbon Nanotube Fiber
Xiaogang Xia
Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190 China
School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorQiang Zhang
Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, Aalto, FI-00076 Finland
Search for more papers by this authorWenbin Zhou
Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Ministry of Education, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, 100124 China
Search for more papers by this authorJie Mei
Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190 China
School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorZhuojian Xiao
Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190 China
School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorWei Xi
Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190 China
School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorYanchun Wang
Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190 China
Beijing Key Laboratory for Advanced Functional Materials and Structure Research, Beijing, 100190 China
Search for more papers by this authorCorresponding Author
Sishen Xie
Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190 China
School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
Beijing Key Laboratory for Advanced Functional Materials and Structure Research, Beijing, 100190 China
Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808 China
E-mail: [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Weiya Zhou
Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190 China
School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
Beijing Key Laboratory for Advanced Functional Materials and Structure Research, Beijing, 100190 China
Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808 China
E-mail: [email protected], [email protected]
Search for more papers by this authorXiaogang Xia
Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190 China
School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorQiang Zhang
Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, Aalto, FI-00076 Finland
Search for more papers by this authorWenbin Zhou
Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Ministry of Education, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, 100124 China
Search for more papers by this authorJie Mei
Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190 China
School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorZhuojian Xiao
Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190 China
School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorWei Xi
Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190 China
School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorYanchun Wang
Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190 China
Beijing Key Laboratory for Advanced Functional Materials and Structure Research, Beijing, 100190 China
Search for more papers by this authorCorresponding Author
Sishen Xie
Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190 China
School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
Beijing Key Laboratory for Advanced Functional Materials and Structure Research, Beijing, 100190 China
Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808 China
E-mail: [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Weiya Zhou
Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190 China
School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
Beijing Key Laboratory for Advanced Functional Materials and Structure Research, Beijing, 100190 China
Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808 China
E-mail: [email protected], [email protected]
Search for more papers by this authorAbstract
As possible alternatives to traditional thermoelectric (TE) materials, carbon nanomaterials and their hybrid materials have great potential in the future application of flexible and lightweight temperature detection. In this work, an integrated, highly flexible, and tailorable TE temperature detector with high performance has been fabricated based on a continuous single-walled carbon nanotube (SWCNT) fiber. The detector consists of more than one pairs of thermocouples composed of p-type SWCNT fiber and n-type SWCNT hybrid fiber in situ doped by polyethylenimine. Due to the node contact mechanism of the detection, the sensitivity of the detector can be improved with the increase of the number of p–n thermocouples, independent of the length of the thermocouple. The temperature detection process of the detector has been studied in detail. In particular, the integrated and flexible detector can be divided into several sub-detectors easily by cutting, illustrating the prospect of large-scale preparation of this kind of novel temperature detectors. Its high flexibility ensures the detector to maintain excellent detection performance after 15 000 bending circles. Furthermore, the as-designed TE type temperature detector demonstrates a great application promise for real-time temperature detection and temperature change sensing even in complex surface and harsh environment.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
smll202102825-sup-0001-SuppMat.pdf1.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1I. M. Tougas, M. Amani, O. J. Gregory, Sensors 2013, 13, 15324.
- 2J. L. Kou, J. Feng, L. Ye, F. Xu, Y. Q. Lu, Opt. Express 2010, 18, 14245.
- 3K. Kanao, S. Harada, Y. Yamamoto, W. Honda, T. Arie, S. Akita, K. Takei, RSC Adv. 2015, 5, 30170.
- 4R. C. Webb, A. P. Bonifas, A. Behnaz, Y. Zhang, K. J. Yu, H. Cheng, M. Shi, Z. Bian, Z. Liu, Y. S. Kim, W. H. Yeo, J. S. Park, J. Song, Y. Li, Y. Huang, A. M. Gorbach, J. A. Rogers, Nat. Mater. 2013, 12, 938.
- 5Z. K. Zhang, B. Tian, Y. Liu, Z. Du, Q. J. Lin, Z. D. Jiang, Materials 2019, 12, 1981.
- 6Z. K. Zhang, B. Tian, Q. Yu, P. Shi, Q. J. Lin, N. Zhao, W. X. Jing, Z. D. Jiang, Sensors 2017, 17, 857.
- 7H. X. Liu, W. Q. Sun, S. Y. Xu, Adv. Mater. 2012, 24, 3275.
- 8X. M. Chen, O. J. Gregory, M. Amani, J. Am. Ceram. Soc. 2011, 94, 854.
- 9E. M. F. Vieira, J. P. B. Silva, K. Veltruska, V. Matolin, A. L. Pires, A. M. Pereira, M. J. M. Gomes, L. M. Goncalves, Nanotechnology 2019, 30, 435502.
- 10R. Feng, F. Tang, N. Zhang, X. H. Wang, ACS Appl. Mater. Interfaces 2019, 11, 38616.
- 11D. Liu, P. Shi, W. Ren, Y. T. Liu, G. Niu, M. Liu, N. Zhang, B. Tian, W. X. Jing, Z. D. Jiang, Z. G. Ye, J. Mater. Chem. C 2018, 6, 3206.
- 12M. Jung, K. Kim, B. Kim, K. J. Lee, J. W. Kang, S. Jeon, Nanoscale 2017, 9, 17212.
- 13M. Jung, K. Kim, B. Kim, H. Cheong, K. Shin, O. S. Kwon, J. J. Park, S. Jeon, ACS Appl. Mater. Interfaces 2017, 9, 26974.
- 14X. Y. Huo, Z. H. Wang, M. Q. Fu, J. Y. Xia, S. Y. Xu, RSC Adv.. 2016, 6, 40185.
- 15F. J. Zhang, Y. P. Zang, D. Z. Huang, C. A. Di, D. B. Zhu, Nat. Commun. 2015, 6, 8356.
- 16J. He, T. M. Tritt, Science 2017, 357, 1369.
- 17G. J. Snyder, E. S. Toberer, Nat. Mater. 2008, 7, 105.
- 18A. D. Avery, B. H. Zhou, J. Lee, E. S. Lee, E. M. Miller, R. Ihly, D. Wesenberg, K. S. Mistry, S. L. Guillot, B. L. Zink, Y. H. Kim, J. L. Blackburn, A. J. Ferguson, Nat. Energy 2016, 1, 16033.
- 19J. L. Blackburn, A. J. Ferguson, C. Cho, J. C. Grunlan, Adv. Mater. 2018, 30, 1704386.
- 20B. A. MacLeod, N. J. Stanton, I. E. Gould, D. Wesenberg, R. Ihly, Z. R. Owczarczyk, K. E. Hurst, C. S. Fewox, C. N. Folmar, K. H. Hughes, B. L. Zink, J. L. Blackburn, A. J. Ferguson, Energy Environ. Sci. 2017, 10, 2168.
- 21K. Yusupov, S. Stumpf, S. J. You, A. Bogach, P. M. Martinez, A. Zakhidov, U. S. Schubert, V. Khovaylo, A. Vomiero, Adv. Funct. Mater. 2018, 28, 1801246.
- 22W. Y. Zhao, S. F. Fan, N. Xiao, D. Y. Liu, Y. Y. Tay, C. Yu, D. H. Sim, H. H. Hng, Q. C. Zhang, F. Boey, J. Ma, X. B. Zhao, H. Zhang, Q. Y. Yan, Energy Environ. Sci. 2012, 5, 5364.
- 23W. B. Zhou, Q. X. Fan, Q. Zhang, K. W. Li, L. Cai, X. G. Gu, F. Yang, N. Zhang, Z. J. Xiao, H. L. Chen, S. Q. Xiao, Y. C. Wang, H. P. Liu, W. Y. Zhou, S. S. Xie, Small 2016, 12, 3407.
- 24T. Li, A. D. Pickel, Y. G. Yao, Y. A. Chen, Y. Q. Zeng, S. D. Lacey, Y. J. Li, Y. L. Wang, J. Q. Dai, Y. B. Wang, B. Yang, M. S. Fuhrer, A. Marconnet, C. Dames, D. H. Drew, L. B. Hu, Nat. Energy 2018, 3, 148.
- 25W. G. Ma, Y. J. Liu, S. Yan, T. T. Miao, S. Y. Shi, Z. Xu, X. Zhang, C. Gao, Nano Res. 2017, 11, 741.
- 26Y. Nonoguchi, K. Ohashi, R. Kanazawa, K. Ashiba, K. Hata, T. Nakagawa, C. Adachi, T. Tanase, T. Kawai, Sci. Rep. 2013, 3, 3344.
- 27C. H. Yu, A. Murali, K. W. Choi, Y. Ryu, Energy Environ. Sci. 2012, 5, 9481.
- 28C. Cho, M. Culebras, K. L. Wallace, Y. X. Song, K. Holder, J. H. Hsu, C. Yu, J. C. Grunlan, Nano Energy 2016, 28, 426.
- 29S. L. Kim, K. Choi, A. Tazebay, C. Yu, ACS Nano 2014, 8, 2377.
- 30W. B. Zhou, Q. X. Fan, Q. Zhang, L. Cai, K. W. Li, X. G. Gu, F. Yang, N. Zhang, Y. C. Wang, H. P. Liu, W. Y. Zhou, S. S. Xie, Nat. Commun. 2017, 8, 14886.
- 31T. P. Ding, K. H. Chan, Y. Zhou, X. Q. Wang, Y. Cheng, T. T. Li, G. W. Ho, Nat. Commun. 2020, 11, 19867
- 32K. T. Park, T. Lee, Y. Ko, Y. S. Cho, C. R. Park, H. Kim, ACS Appl. Mater. Interfaces 2021, 13, 6257.
- 33J. Choi, Y. Jung, S. J. Yang, J. Y. Oh, J. Oh, K. Jo, J. G. Son, S. E. Moon, C. R. Park, H. Kim, ACS Nano 2017, 11, 7608.
- 34H. J. Song, Y. Qiu, Y. Wang, K. F. Cai, D. L. Li, Y. Deng, J. Q. He, Compos. Sci. Technol. 2017, 153, 71.
- 35C. J. An, Y. H. Kang, H. Song, Y. Jeong, S. Y. Cho, J. Mater. Chem. A 2017, 5, 15631.
- 36C. Cho, K. L. Wallace, P. Tzeng, J. H. Hsu, C. Yu, J. C. Grunlan, Adv. Energy Mater. 2016, 6, 1502168.
- 37A. Dey, O. P. Bajpai, A. K. Sikder, S. Chattopadhyay, M. A. S. Khan, Renewable Sustainable Energy Rev. 2016, 53, 653.
- 38J. Y. Kim, J. H. Mo, Y. H. Kang, S. Y. Cho, K. S. Jang, Nanoscale 2018, 10, 19766.
- 39J. D. Ryan, A. Lund, A. I. Hofmann, R. Kroon, R. Sarabia-Riquelme, M. C. Weisenberger, C. Muller, ACS Appl. Energy Mater. 2018, 1, 2934.
- 40H. Wang, J. H. Hsu, S. I. Yi, S. L. Kim, K. Choi, G. Yang, C. Yu, Adv. Mater. 2015, 27, 6855.
- 41Q. Zhang, K. W. Li, Q. X. Fan, X. G. Xia, N. Zhang, Z. J. Xiao, W. B. Zhou, F. Yang, Y. C. Wang, H. P. Liu, W. Y. Zhou, Chin. Phys. B 2017, 26, 028802.
- 42Q. Zhang, W. Y. Zhou, X. G. Xia, K. W. Li, N. Zhang, Y. C. Wang, Z. J. Xiao, Q. X. Fan, E. I. Kauppinen, S. S. Xie, Adv. Mater. 2020, 32, 1047.
- 43K. Bradley, S.-H. Jhi, P. G. Collins, J. Hone, M. L. Cohen, S. G. Louie, A. Zettl, Phys. Rev. Lett. 2000, 85, 4361.
- 44P. G. Collins, K. Bradley, M. Ishigami, A. Zettl, Science 2000, 287, 1801.
- 45X. G. Xia, Q. Zhang, W. B. Zhou, Z. J. Xiao, W. Xi, Y. C. Wang, W. Y. Zhou, Chin. Phys. B 2021, 30, 078801.
- 46Z. Zhang, X. Ma, D. Wang, C. Song, Y. Wang, AIChE J. 2012, 58, 2495.
- 47S. Nanot, A. W. Cummings, C. L. Pint, A. Ikeuchi, T. Akiho, K. Sueoka, R. H. Hauge, F. Leonard, J. Kono, Sci. Rep. 2013, 3, 1335.
- 48J. Park, M. Kim, Y. Lee, H. S. Lee, H. Ko, Sci. Adv. 2015, 1, e1500661.