Simultaneously Engineering the Coordination Environment and Pore Architecture of Metal–Organic Framework-Derived Single-Atomic Iron Catalysts for Ultraefficient Oxygen Reduction
Feng Liu
State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemical Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorLei Shi
State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemical Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorShaofeng Song
Hebei Key Laboratory of Functional Polymers, Institute of Polymer Science and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130 China
Search for more papers by this authorKai Ge
Hebei Key Laboratory of Functional Polymers, Institute of Polymer Science and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130 China
Search for more papers by this authorXiaopeng Zhang
Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, 819-0395 Japan
Search for more papers by this authorCorresponding Author
Yingchun Guo
Key Laboratory of Special Functional Materials for Ecological Environment and Information, Hebei University of Technology, Ministry of Education, Tianjin, 300130 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Dong Liu
State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemical Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorFeng Liu
State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemical Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorLei Shi
State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemical Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorShaofeng Song
Hebei Key Laboratory of Functional Polymers, Institute of Polymer Science and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130 China
Search for more papers by this authorKai Ge
Hebei Key Laboratory of Functional Polymers, Institute of Polymer Science and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130 China
Search for more papers by this authorXiaopeng Zhang
Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, 819-0395 Japan
Search for more papers by this authorCorresponding Author
Yingchun Guo
Key Laboratory of Special Functional Materials for Ecological Environment and Information, Hebei University of Technology, Ministry of Education, Tianjin, 300130 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Dong Liu
State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemical Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorAbstract
Designing highly efficient and durable electrocatalysts that accelerate sluggish oxygen reduction reaction kinetics for fuel cells and metal–air batteries are highly desirable but challenging. Herein, a facile yet robust strategy is reported to rationally design single iron active centers synergized with local S atoms in metal–organic frameworks derived from hierarchically porous carbon nanorods (Fe/N,S-HC). The cooperative trithiocyanuric acid-based coating not only introduces S atoms that regulate the coordination environment of the active centers, but also facilitates the formation of a hierarchically porous structure. Benefiting from electronic modulation and architectural functionality, Fe/N,S-HC catalyst shows markedly enhanced ORR performance with a half-wave potential (E1/2) of 0.912 V and satisfactory long-term durability in alkaline medium, outperforming those of commercial Pt/C. Impressively, Fe/N,S-HC-based Zn–air battery also presents outstanding battery performance and long-term stability. Both electrochemical experimental and density functional theoretical (DFT) calculated results suggest that the FeN4 sites tailored with local S atoms are favorable for the adsorption/desorption of oxygen intermediate, resulting in lower activation energy barrier and ultraefficient oxygen reduction catalytic activity. This work provides an atomic-level combined with porous morphological-level insights into oxygen reduction catalytic property, promoting rational design and development of novel highly efficient single-atom catalysts for the renewable energy applications.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
smll202102425-sup-0001-SuppMat.pdf3.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) G. Chen, T. Wang, P. Liu, Z. Liao, H. Zhong, G. Wang, P. Zhang, M. Yu, E. Zschech, M. Chen, J. Zhang, X. Feng, Energy Environ. Sci. 2020, 13, 2849; b) M. H. Shao, Q. W. Chang, J. P. Dodelet, R. Chenitz, Chem. Rev. 2016, 116, 3594.
- 2a) Y. Li, P. Zhang, L. Wan, Y. Zheng, X. Qu, H. Zhang, Y. Wang, K. Zaghib, J. Yuan, S. Sun, Y. Wang, Z. Zhou, S. Sun, Adv. Funct. Mater. 2021, 31, 2009645; b) E. Proietti, F. Jaouen, M. Lefevre, N. Larouche, J. Tian, J. Herranz, J.-P. Dodelet, Nat. Commun. 2011, 2, 416; c) Y. Jiang, Y.-P. Deng, J. Fu, D. U. Lee, R. Liang, Z. P. Cano, Y. Liu, Z. Bai, S. Hwang, L. Yang, D. Su, W. Chu, Z. Chen, Adv. Energy Mater. 2018, 8, 1702900; d) J.-S. Lee, S. T. Kim, R. Cao, N.-S. Choi, M. Liu, K. T. Lee, J. Cho, Adv. Energy Mater. 2011, 1, 34.
- 3Z. Yang, Y. Wang, M. Zhu, Z. Li, W. Chen, W. Wei, T. Yuan, Y. Qu, Q. Xu, C. Zhao, X. Wang, P. Li, Y. Li, Y. Wu, Y. Li, ACS Catal. 2019, 9, 2158.
- 4a) G. Wu, K. L. More, C. M. Johnston, P. Zelenay, Science 2011, 332, 443; b) F. Jaouen, E. Proietti, M. Lefevre, R. Chenitz, J.-P. Dodelet, G. Wu, H. T. Chung, C. M. Johnston, P. Zelenay, Energy Environ. Sci. 2011, 4, 114.
- 5a) H. T. Chung, D. A. Cullen, D. Higgins, B. T. Sneed, E. F. Holby, K. L. More, P. Zelenay, Science 2017, 357, 479; b) H. Zhang, S. Hwang, M. Wang, Z. Feng, S. Karakalos, L. Luo, Z. Qiao, X. Xie, C. Wang, D. Su, Y. Shao, G. Wu, J. Am. Chem. Soc. 2017, 139, 14143; c) X. X. Wang, D. A. Cullen, Y.-T. Pan, S. Hwang, M. Wang, Z. Feng, J. Wang, M. H. Engelhard, H. Zhang, Y. He, Y. Shao, D. Su, K. L. More, J. S. Spendelow, G. Wu, Adv. Mater. 2018, 30, 1706758.
- 6a) H. Zhang, H. Osgood, X. Xie, Y. Shao, G. Wu, Nano Energy 2017, 31, 331; b) Y. He, S. Hwang, D. A. Cullen, M. A. Uddin, L. Langhorst, B. Li, S. Karakalos, A. J. Kropf, E. C. Wegener, J. Sokolowski, M. Chen, D. Myers, D. Su, K. L. More, G. Wang, S. Litster, G. Wu, Energy Environ. Sci. 2019, 12, 250; c) Q. Liu, X. Liu, L. Zheng, J. Shui, Angew. Chem., Int. Ed. 2018, 57, 1204; d) M. Xiao, Y. Chen, J. Zhu, H. Zhang, X. Zhao, L. Gao, X. Wang, J. Zhao, J. Ge, Z. Jiang, S. Chen, C. Liu, W. Xing, J. Am. Chem. Soc. 2019, 141, 17763.
- 7a) X.-F. Yang, A. Wang, B. Qiao, J. Li, J. Liu, T. Zhang, Acc. Chem. Res. 2013, 46, 1740; b) A. Zitolo, N. Ranjbar-Sahraie, T. Mineva, J. Li, Q. Jia, S. Stamatin, G. F. Harrington, S. M. Lyth, P. Krtil, S. Mukerjee, E. Fonda, F. Jaouen, Nat. Commun. 2017, 8, 957; c) H. Fei, J. Dong, Y. Feng, C. S. Allen, C. Wan, B. Volosskiy, M. Li, Z. Zhao, Y. Wang, H. Sun, P. An, W. Chen, Z. Guo, C. Lee, D. Chen, I. Shakir, M. Liu, T. Hu, Y. Li, A. I. Kirkland, X. Duan, Y. Huang, Nat. Catal. 2018, 1, 63.
- 8a) B. Lu, Q. Liu, S. Chen, ACS Catal. 2020, 10, 7584; b) X. Li, H. Rong, J. Zhang, D. Wang, Y. Li, Nano Res. 2020, 13, 1842; c) M. Xiao, J. Zhu, L. Ma, Z. Jin, J. Ge, X. Deng, Y. Hou, Q. He, J. Li, Q. Jia, S. Mukerjee, R. Yang, Z. Jiang, D. Su, C. Liu, W. Xing, ACS Catal. 2018, 8, 2824.
- 9a) K. Chen, K. Liu, P. An, H. Li, Y. Lin, J. Hu, C. Jia, J. Fu, H. Li, H. Liu, Z. Lin, W. Li, J. Li, Y.-R. Lu, T.-S. Chan, N. Zhang, M. Liu, Nat. Commun. 2020, 11, 4173; b) P. Zhou, N. Li, Y. Chao, W. Zhang, F. Lv, K. Wang, W. Yang, P. Gao, S. Guo, Angew. Chem., Int. Ed. 2019, 58, 14184.
- 10a) Z. Zhang, X. Zhao, S. Xi, L. Zhang, Z. Chen, Z. Zeng, M. Huang, H. Yang, B. Liu, S. J. Pennycook, P. Chen, Adv. Energy Mater. 2020, 10, 2070195; b) H. Shang, X. Zhou, J. Dong, A. Li, X. Zhao, Q. Liu, Y. Lin, J. Pei, Z. Li, Z. Jiang, D. Zhou, L. Zheng, Y. Wang, J. Zhou, Z. Yang, R. Cao, R. Sarangi, T. Sun, X. Yang, X. Zheng, W. Yan, Z. Zhuang, J. Li, W. Chen, D. Wang, J. Zhang, Y. Li, Nat. Commun. 2020, 11, 3049; c) M. Wang, W. Yang, X. Li, Y. Xu, L. Zheng, C. Su, B. Liu, ACS Energy Lett. 2021, 6, 379; d) Y. Chen, R. Gao, S. Ji, H. Li, K. Tang, P. Jiang, H. Hu, Z. Zhang, H. Hao, Q. Qu, X. Liang, W. Chen, J. Dong, D. Wang, Y. Li, Angew. Chem., Int. Ed. 2021, 60, 3212; e) K. Yuan, D. Luetzenkirchen-Hecht, L. Li, L. Shuai, Y. Li, R. Cao, M. Qiu, X. Zhuang, M. K. H. Leung, Y. Chen, U. Scherf, J. Am. Chem. Soc. 2020, 142, 2404.
- 11a) C.-C. Hou, L. Zou, L. Sun, K. Zhang, Z. Liu, Y. Li, C. Li, R. Zou, J. Yu, Q. Xu, Angew. Chem., Int. Ed. 2020, 59, 7384; b) M. Qiao, Y. Wang, Q. Wang, G. Hu, X. Mamat, S. Zhang, S. Wang, Angew. Chem., Int. Ed. 2020, 59, 2688; c) X. Wan, X. Liu, Y. Li, R. Yu, L. Zheng, W. Yan, H. Wang, M. Xu, J. Shui, Nat. Catal. 2019, 2, 259; d) Y. Chen, S. Ji, S. Zhao, W. Chen, J. Dong, W.-C. Cheong, R. Shen, X. Wen, L. Zheng, A. I. Rykov, S. Cai, H. Tang, Z. Zhuang, C. Chen, Q. Peng, D. Wang, Y. Li, Nat. Commun. 2018, 9, 5422; e) X. Zhang, X. Han, Z. Jiang, J. Xu, L. Chen, Y. Xue, A. Nie, Z. Xie, Q. Kuang, L. Zheng, Nano Energy 2020, 71, 104547.
- 12T. Wang, C. Yang, Y. Liu, M. Yang, X. Li, Y. He, H. Li, H. Chen, Z. Lin, Nano Lett. 2020, 20, 5639.
- 13a) S. Wang, J. Qin, T. Meng, M. Cao, Nano Energy 2017, 39, 626; b) X. Chen, N. Wang, K. Shen, Y. Xie, Y. Tan, Y. Li, ACS Appl. Mater. Interfaces 2019, 11, 25976.
- 14a) Y. Zhou, Y. Yu, D. Ma, A. C. Foucher, L. Xiong, J. Zhang, E. A. Stach, Q. Yue, Y. Kang, ACS Catal. 2021, 11, 74; b) J. Han, H. Bao, J.-Q. Wang, L. Zheng, S. Sun, Z. L. Wang, C. Sun, Appl. Catal., B 2021, 280, 119411; c) Y. Chen, Z. Li, Y. Zhu, D. Sun, X. Liu, L. Xu, Y. Tang, Adv. Mater. 2019, 31, 1806312.
- 15X. Fu, N. Li, B. Ren, G. Jiang, Y. Liu, F. M. Hassan, D. Su, J. Zhu, L. Yang, Z. Bai, Z. P. Cano, A. Yu, Z. Chen, Adv. Energy Mater. 2019, 9, 1970031.
10.1002/aenm.201970031 Google Scholar
- 16a) Y. Zhou, X. Tao, G. Chen, R. Lu, D. Wang, M.-X. Chen, E. Jin, J. Yang, H.-W. Liang, Y. Zhao, X. Feng, A. Narita, K. Muellen, Nat. Commun. 2020, 11, 5892; b) X. Gong, J. Zhu, J. Li, R. Gao, Q. Zhou, Z. Zhang, H. Dou, L. Zhao, X. Sui, J. Cai, Y. Zhang, B. Liu, Y. Hu, A. Yu, S.-h. Sun, Z. Wang, Z. Chen, Adv. Funct. Mater. 2021, 31, 2008085.
- 17a) R. Jiang, L. Li, T. Sheng, G. Hu, Y. Chen, L. Wang, J. Am. Chem. Soc. 2018, 140, 11594; b) Y. Jia, X. Xiong, D. Wang, X. Duan, K. Sun, Y. Li, L. Zheng, W. Lin, M. Done, G. Zhang, W. Liu, X. Sun, Nano-Micro Lett. 2020, 12, 116.
- 18G. Li, L. Pei, Y. Wu, B. Zhu, Q. Hu, H. Yang, Q. Zhang, J. Liu, C. He, J. Mater. Chem. A 2019, 7, 11223.
- 19F. Jaouen, J. Herranz, M. Lefevre, J.-P. Dodelet, U. I. Kramm, I. Herrmann, P. Bogdanoff, J. Maruyama, T. Nagaoka, A. Garsuch, J. R. Dahn, T. Olson, S. Pylypenko, P. Atanassov, E. A. Ustinov, ACS Appl. Mater. Interfaces 2009, 1, 1623.
- 20Y. Qiao, P. Yuan, Y. Hu, J. Zhang, S. Mu, J. Zhou, H. Li, H. Xia, J. He, Q. Xu, Adv. Mater. 2018, 30, 1804504.
- 21J. Zhang, Y. Zhao, C. Chen, Y.-C. Huang, C.-L. Dong, C.-J. Chen, R.-S. Liu, C. Wang, K. Yan, Y. Li, G. Wang, J. Am. Chem. Soc. 2019, 141, 20118.
- 22a) M. Xiao, Z. Xing, Z. Jin, C. Liu, J. Ge, J. Zhu, Y. Wang, X. Zhao, Z. Chen, Adv. Mater. 2020, 32, 2004900; b) H. Shen, E. Gracia-Espino, J. Ma, K. Zang, J. Luo, L. Wang, S. Gao, X. Mamat, G. Hu, T. Wagberg, S. Guo, Angew. Chem., Int. Ed. 2017, 56, 13800.
- 23L. Yang, D. Cheng, X. Zeng, X. Wan, J. Shui, Z. Xiang, D. Cao, Proc. Natl. Acad. Sci. USA 2018, 115, 6626.
- 24T. He, B. Lu, Y. Chen, Y. Wang, Y. Zhang, J. L. Davenport, A. P. Chen, C.-W. Pao, M. Liu, Z. Sun, A. Stram, A. Mordaunt, J. Velasco Jr., Y. Ping, Y. Zhang, S. Chen, Research 2019, 2019, 6813585.
- 25Q. Wang, Y. Ji, Y. Lei, Y. Wang, Y. Wang, Y. Li, S. Wang, ACS Energy Lett. 2018, 3, 1183.
- 26K. Yuan, X. Zhuang, H. Fu, G. Brunklaus, M. Forster, Y. Chen, X. Feng, U. Scherf, Angew. Chem., Int. Ed. 2016, 55, 6858.
- 27Z. Huang, H. Pan, W. Yang, H. Zhou, N. Gao, C. Fu, S. Li, H. Li, Y. Kuang, ACS Nano 2018, 12, 208.
- 28G. Yang, J. Zhu, P. Yuan, Y. Hu, G. Qu, B.-A. Lu, X. Xue, H. Yin, W. Cheng, J. Cheng, W. Xu, J. Li, J. Hu, S. Mu, J.-N. Zhang, Nat. Commun. 2021, 12, 1734.
- 29F. Wang, Y. Zhou, S. Lin, L. Yang, Z. Hu, D. Xie, Nano Energy 2020, 78, 105128.
- 30N. Zhang, T. Zhou, M. Chen, H. Feng, R. Yuan, C. a. Zhong, W. Yan, Y. Tian, X. Wu, W. Chu, C. Wu, Y. Xie, Energy Environ. Sci. 2020, 13, 111.