Synergistic Enhancement of Electrocatalytic Nitrogen Reduction Over Boron Nitride Quantum Dots Decorated Nb2CTx-MXene
Corresponding Author
Ke Chu
School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou, 730070 China
E-mail: [email protected]
Search for more papers by this authorXingchuan Li
School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou, 730070 China
Search for more papers by this authorQingqing Li
School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou, 730070 China
Search for more papers by this authorYali Guo
School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou, 730070 China
Search for more papers by this authorHu Zhang
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083 China
Search for more papers by this authorCorresponding Author
Ke Chu
School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou, 730070 China
E-mail: [email protected]
Search for more papers by this authorXingchuan Li
School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou, 730070 China
Search for more papers by this authorQingqing Li
School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou, 730070 China
Search for more papers by this authorYali Guo
School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou, 730070 China
Search for more papers by this authorHu Zhang
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083 China
Search for more papers by this authorAbstract
Electrochemical N2 fixation represents a promising strategy toward sustainable NH3 synthesis, whereas the rational design of high-performance catalysts for the nitrogen reduction reaction (NRR) is urgently required but remains challenging. Herein, a novel hexagonal BN quantum dots (BNQDs) decorated Nb2CTx–MXene (BNQDs@Nb2CTx) is explored as an efficient NRR catalyst. BNQDs@Nb2CTx presents the optimum NRR activity with an NH3 yield rate of 66.3 µg h−1 mg−1 (−0.4 V) and a Faradaic efficiency of 16.7% (−0.3 V), outperforming most of the state-of-the-art NRR catalysts, together with an excellent stability. Theoretical calculations revealed that the synergistic interplay of BNQDs and Nb2CTx enabled the creation of unique interfacial B sites serving as NRR catalytic centers capable of enhancing the N2 activation, lowering the reaction energy barrier and impeding the H2 evolution.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
smll202102363-sup-0001-SuppMat.pdf1.7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1R. D. Milton, R. Cai, S. Abdellaoui, D. Leech, A. L. De Lacey, M. Pita, S. D. Minteer, Angew. Chem., Int. Ed. 2017, 56, 2680.
- 2B. N. Van, Nature 2002, 415, 381.
- 3K. Chu, W. Gu, Q. Li, Y. Liu, Y. Tian, W. Liu, J. Energy Chem. 2021, 53, 82.
- 4W. Gu, Y. Guo, Q. Li, Y. Tian, K. Chu, ACS Appl. Mater. Interfaces 2020, 12, 37258.
- 5K. Chu, Q. Q. Li, Y. H. Cheng, Y. P. Liu, ACS Appl. Mater. Interfaces 2020, 12, 11789.
- 6X. Zhu, S. Mou, Q. Peng, Q. Liu, Y. Luo, G. Chen, S. Gao, X. Sun, J. Mater. Chem. A 2020, 8, 1545.
- 7T. Xu, J. Liang, S. Li, Z. Xu, L. Yue, T. Li, Y. Luo, Q. Liu, X. Shi, A. M. Asiri, C. Yang, X. Sun, Small Sci. 2021, 1, 2000069.
- 8T. Xu, B. Ma, J. Liang, L. Yue, Q. Liu, T. Li, H. Zhao, Y. Luo, S. Lu, X. Sun, Acta. Phys. Chim. Sin. 2020, 37, 2009043.
- 9B. Ma, H. Zhao, T. Li, Q. Liu, Y. Luo, C. Li, S. Lu, A. M. Asiri, D. Ma, X. Sun, Nano Res. 2021, 14, 555.
- 10K. Chu, H. Nan, Q. Li, Y. Guo, Y. Tian, W. Liu, J. Energy Chem. 2021, 53, 132.
- 11J. Wang, H. Nan, Y. Tian, K. Chu, ACS Sustainable Chem. Eng. 2020, 8, 12733.
- 12Y. Liu, Y. Luo, Q. Li, J. Wang, K. Chu, Chem. Commun. 2020, 56, 10227.
- 13Y. Li, H. Wang, C. Priest, S. Li, P. Xu, G. Wu, Adv. Mater. 2021, 33, 2000381.
- 14G. Qing, R. Ghazfar, S. T. Jackowski, F. Habibzadeh, M. M. Ashtiani, C.-P. Chen, M. R. Smith, T. W. Hamann, Chem. Rev. 2020, 120, 5437.
- 15H. Li, C. Huang, Adv. Mater. Interfaces 2020, 7, 2001215.
- 16Z.-H. Xue, S.-N. Zhang, Y.-X. Lin, H. Su, G.-Y. Zhai, J.-T. Han, Q.-Y. Yu, X.-H. Li, M. Antonietti, J.-S. Chen, J. Am. Chem. Soc. 2019, 141, 14976.
- 17Q. Qin, T. Heil, M. Antonietti, M. Oschatz, Small Methods 2018, 2, 1800202.
- 18H. Huang, L. Xia, X. Shi, A. M. Asiri, X. Sun, Chem. Commun. 2018, 54, 11427.
- 19Y. Cheng, Y. Guo, Q. Li, K. Chu, J. Energy Chem. 2021, 56, 259.
10.1016/j.jechem.2020.07.055 Google Scholar
- 20P. Wang, Q. Q. Li, Y. H. Cheng, K. Chu, J. Mater. Sci. 2020, 55, 4624.
- 21P. Shen, Y. Liu, Q. Li, K. Chu, Chem. Commun. 2020, 56, 10505.
- 22Q. Li, Y. Cheng, X. Li, Y. Guo, K. Chu, Chem. Commun. 2020, 56, 13009.
- 23Y. Cheng, H. Nan, Q. Li, Y. Luo, K. Chu, ACS Sustainable Chem. Eng. 2020, 8, 13908.
- 24T. Wang, Q. Liu, T. Li, S. Lu, G. Chen, X. Shi, A. M. Asiri, Y. Luo, D. Ma, X. Sun, J. Mater. Chem. A 2021, 9, 884.
- 25T. Wang, S. Li, B. He, X. Zhu, Y. Luo, Q. Liu, T. Li, S. Lu, C. Ye, A. M. Asiri, X. Sun, Chinese J. Catal. 2021, 42, 1024.
- 26S. Li, Y. Wu, Q. Liu, B. Li, T. Li, H. Zhao, A. A. Alshehri, K. A. Alzahrani, Y. Luo, L. Li, X. Sun, Inorg. Chem. Front. 2021, 8, 3105.
- 27S. Li, Y. Wang, J. Liang, T. Xu, D. Ma, Q. Liu, T. Li, S. Xu, G. Chen, A. M. Asiri, Y. Luo, Q. Wu, X. Sun, Mater. Today Phys. 2021, 18, 100396.
- 28K. Chu, Q. Li, Y. Liu, J. Wang, Y. Cheng, Appl. Catal. B 2020, 267, 118693.
- 29Y. Tian, D. Xu, K. Chu, Z. Wei, W. Liu, J. Mater. Sci. 2019, 54, 9088.
- 30X. Zhu, T. Wu, L. Ji, C. Li, T. Wang, S. Wen, S. Gao, X. Shi, Y. Luo, Q. Peng, X. Sun, J. Mater. Chem. A 2019, 7, 16117.
- 31Y. Zhang, H. Du, Y. Ma, L. Ji, H. Guo, Z. Tian, H. Chen, H. Huang, G. Cui, A. M. Asiri, F. Qu, L. Chen, X. Sun, Nano Res. 2019, 12, 919.
- 32X. Zhang, T. Wu, H. Wang, R. Zhao, H. Chen, T. Wang, P. Wei, Y. Luo, Y. Zhang, X. Sun, ACS Catal. 2019, 9, 4609.
- 33Q. Li, Y. Guo, Y. Tian, W. Liu, K. Chu, J. Mater. Chem. A 2020, 8, 16195.
- 34K. Chu, J. Wang, Y. P. Liu, Q. Q. Li, Y. L. Guo, J. Mater. Chem. A 2020, 8, 7117.
- 35K. Chu, Y. Liu, Y. Li, Y. Guo, Y. Tian, H. Zhang, Appl. Catal. B 2020, 264, 118525.
- 36K. Chu, Y. Liu, Y. Chen, Q. Li, J. Mater. Chem. A 2020, 8, 5200.
- 37K. Chu, Y. Cheng, Q. Li, Y. Liu, Y. Tian, J. Mater. Chem. A 2020, 8, 5865.
- 38T. Wu, H. Zhao, X. Zhu, Z. Xing, Q. Liu, T. Liu, S. Gao, S. Lu, G. Chen, A. M. Asiri, Y. Zhang, X. Sun, Adv. Mater. 2020, 32, 2000299.
- 39H. Chen, T. Wu, X. Li, S. Lu, F. Zhang, Y. Wang, H. Zhao, Q. Liu, Y. Luo, A. M. Asiri, Z.-s. Feng, Y. Zhang, X. Sun, ACS Sustainable Chem. Eng. 2021, 9, 1512.
- 40W. Peng, M. Luo, X. Xu, K. Jiang, M. Peng, D. Chen, T. S. Chan, Y. Tan, Adv. Energy Mater. 2020, 10, 2001364.
- 41Z. Liu, M. Zhang, H. Wang, D. Cang, X. Ji, B. Liu, W. Yang, D. Li, J. Liu, ACS Sustainable Chem. Eng. 2020, 8, 5278.
- 42K. Chu, Y. P. Liu, Y. B. Li, Y. L. Guo, Y. Tian, ACS Appl. Mater. Interfaces 2020, 12, 7081.
- 43K. Chu, Y. Liu, J. Wang, H. Zhang, ACS Appl. Energy Mater. 2019, 2, 2288.
- 44K. Chu, Y. Liu, Y. Li, H. Zhang, Y. Tian, J. Mater. Chem. A 2019, 7, 4389.
- 45K. Chu, Y. Liu, Y. Li, J. Wang, H. Zhang, ACS Appl. Mater. Interfaces 2019, 11, 31806.
- 46Y. Fang, Y. Xue, Y. Li, H. Yu, L. Hui, Y. Liu, C. Xing, C. Zhang, D. Zhang, Z. Wang, Angew. Chem., Int. Ed. 2020, 59, 13021.
- 47A. Liu, X. Liang, X. Ren, W. Guan, M. Gao, Y. Yang, Q. Yang, L. Gao, Y. Li, T. Ma, Adv. Funct. Mater. 2020, 30, 2003437.
- 48Z. Jin, C. Liu, Z. Liu, J. Han, Y. Fang, Y. Han, Y. Niu, Y. Wu, C. Sun, Y. Xu, Adv. Energy Mater. 2020, 10, 2000797.
- 49Y. R. Luo, G. F. Chen, L. Ding, X. Z. Chen, L. X. Ding, H. H. Wang, Joule 2019, 3, 279.
- 50L. R. Johnson, S. Sridhar, L. Zhang, K. D. Fredrickson, A. S. Raman, J. Jang, C. Leach, A. Padmanabhan, C. C. Price, N. C. Frey, ACS Catal. 2020, 10, 253.
- 51Y. Guo, T. Wang, Q. Yang, X. Li, H. Li, Y. Wang, T. Jiao, Z. Huang, B. Dong, W. Zhang, ACS Nano 2020, 14, 9089.
- 52J. Zhao, X. Ren, X. Li, D. Fan, X. Sun, H. Ma, Q. Wei, D. Wu, Nanoscale 2019, 11, 4231.
- 53S. Zhou, X. Yang, X. Xu, S. X. Dou, Y. Du, J. Zhao, J. Am. Chem. Soc. 2020, 142, 308.
- 54X. Yu, P. Han, Z. Wei, L. Huang, Z. Gu, S. Peng, J. Ma, G. Zheng, Joule 2018, 2, 1610.
- 55M. Naguib, J. Halim, J. Lu, K. M. Cook, L. Hultman, Y. Gogotsi, M. W. Barsoum, J. Am. Chem. Soc. 2013, 135, 15966.
- 56H. Li, R. Y. Tay, S. H. Tsang, X. Zhen, E. H. T. Teo, Small 2015, 11, 6491.
- 57X.-D. Zhu, Y. Xie, Y.-T. Liu, J. Mater. Chem. A 2018, 6, 21255.
- 58K. Chu, X. H. Wang, Y. B. Li, D. J. Huang, Z. R. Geng, X. L. Zhao, H. Liu, H. Zhang, Mater. Des. 2018, 140, 85.
- 59K. Chu, F. Wang, X. H. Wang, Y. B. Li, Z. R. Geng, D. J. Huang, H. Zhang, Mater. Des. 2018, 144, 290.
- 60K. Chu, F. Wang, Y. B. Li, X. H. Wang, D. J. Huang, Z. R. Geng, Compos. Part A-Appl. S. 2018, 109, 267.
- 61Z. Yuan, L. Wang, D. Li, J. Cao, W. Han, ACS Nano 2021, 15, 149.
- 62G. Li, N. Li, S. Peng, B. He, J. Wang, Y. Du, W. Zhang, K. Han, F. Dang, Adv. Energy. Mater. 2021, 11, 2002721.
- 63J. Xiao, J. Wen, J. Zhao, X. Ma, H. Gao, X. Zhang, Electrochim. Acta 2020, 337, 135803.
- 64Y.-T. Liu, D. Li, J. Yu, B. Ding, Angew. Chem., Int. Ed. 2019, 131, 16591.
10.1002/ange.201908415 Google Scholar
- 65X. Zhang, L. An, C. Bai, L. Chen, Y. Yu, Mater. Today Chem. 2021, 20, 100425.
- 66J. Zhao, J. Wen, J. Xiao, X. Ma, J. Gao, L. Bai, H. Gao, X. Zhang, Z. Zhang, J. Energy Chem. 2021, 53, 387.
- 67X. Lv, L. Kou, T. Frauenheim, ACS Appl. Mater. Interfaces 2021, 13, 14283.
- 68L. Han, M. Hou, P. Ou, H. Cheng, Z. Ren, Z. Liang, J. A. Boscoboinik, A. Hunt, I. Waluyo, S. Zhang, ACS Catal. 2021, 11, 509.