A High-Energy and Long-Life Aqueous Zn/Birnessite Battery via Reversible Water and Zn2+ Coinsertion
Zhiguo Hou
Jiangsu University of Technology, Zhong Wu Road 1801, Changzhou, 213001 China
Search for more papers by this authorMengfei Dong
Jiangsu University of Technology, Zhong Wu Road 1801, Changzhou, 213001 China
Search for more papers by this authorYali Xiong
Jiangsu University of Technology, Zhong Wu Road 1801, Changzhou, 213001 China
Search for more papers by this authorCorresponding Author
Xueqian Zhang
Jiangsu University of Technology, Zhong Wu Road 1801, Changzhou, 213001 China
E-mail: [email protected], [email protected]
Search for more papers by this authorHuaisheng Ao
School of Chemistry and Materials, University of Science and Technology of China, Hefei, 230052 China
Search for more papers by this authorMengke Liu
School of Chemistry and Materials, University of Science and Technology of China, Hefei, 230052 China
Search for more papers by this authorCorresponding Author
Yongchun Zhu
School of Chemistry and Materials, University of Science and Technology of China, Hefei, 230052 China
E-mail: [email protected], [email protected]
Search for more papers by this authorYitai Qian
School of Chemistry and Materials, University of Science and Technology of China, Hefei, 230052 China
Search for more papers by this authorZhiguo Hou
Jiangsu University of Technology, Zhong Wu Road 1801, Changzhou, 213001 China
Search for more papers by this authorMengfei Dong
Jiangsu University of Technology, Zhong Wu Road 1801, Changzhou, 213001 China
Search for more papers by this authorYali Xiong
Jiangsu University of Technology, Zhong Wu Road 1801, Changzhou, 213001 China
Search for more papers by this authorCorresponding Author
Xueqian Zhang
Jiangsu University of Technology, Zhong Wu Road 1801, Changzhou, 213001 China
E-mail: [email protected], [email protected]
Search for more papers by this authorHuaisheng Ao
School of Chemistry and Materials, University of Science and Technology of China, Hefei, 230052 China
Search for more papers by this authorMengke Liu
School of Chemistry and Materials, University of Science and Technology of China, Hefei, 230052 China
Search for more papers by this authorCorresponding Author
Yongchun Zhu
School of Chemistry and Materials, University of Science and Technology of China, Hefei, 230052 China
E-mail: [email protected], [email protected]
Search for more papers by this authorYitai Qian
School of Chemistry and Materials, University of Science and Technology of China, Hefei, 230052 China
Search for more papers by this authorAbstract
Aqueous rechargeable Zn/birnessite batteries have recently attracted extensive attention for energy storage system because of their low cost and high safety. However, the reaction mechanism of the birnessite cathode in aqueous electrolytes and the cathode structure degradation mechanics still remain elusive and controversial. In this work, it is found that solvation water molecules coordinated to Zn2+ are coinserted into birnessite lattice structure contributing to Zn2+ diffusion. However, the birnessite will suffer from hydroxylation and Mn dissolution with too much solvated water coinsertion. Through engineering Zn2+ primary solvation sheath with strong-field ligand in aqueous electrolyte, highly reversible [Zn(H2O)2]2+ complex intercalation/extraction into/from birnessite cathode is obtained. Cathode–electrolyte interface suppressing the Mn dissolution also forms. The Zn metal anode also shows high reversibility without formation of “death-zinc” and detrimental dendrite. A full cell coupled with birnessite cathode and Zn metal anode delivers a discharge capacity of 270 mAh g−1, a high energy density of 280 Wh kg−1 (based on total mass of cathode and anode active materials), and capacity retention of 90% over 5000 cycles.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
smll202001228-sup-0001-SuppMat.pdf2.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1H. Pan, Y. Shao, P. Yan, Y. Cheng, K. S. Han, Z. Nie, C. Wang, J. Yang, X. Li, P. Bhattacharya, Nat. Energy 2016, 1, 16039.
- 2D. Kundu, B. D. Adams, V. Duffort, S. H. Vajargah, L. F. Nazar, Nat. Energy 2016, 1, 16119.
- 3F. Wang, O. Borodin, T. Gao, X. L. Fan, W. Sun, F. D. Han, A. Faraone, J. A. Dura, K. Xu, C. S. Wang, Nat. Mater. 2018, 17, 543.
- 4J. F. Parker, C. N. Chervin, I. R. Pala, M. Machler, M. F. Burz, J. W. Long, D. R. Rolison, Science 2017, 356, 415.
- 5N. Zhang, F. Cheng, J. Liu, L. Wang, X. Long, X. Liu, F. Li, J. Chen, Nat. Commun. 2017, 8, 405.
- 6L. Zhang, L. Chen, X. Zhou, Z. Liu, Adv. Energy Mater. 2015, 5, 1400930.
- 7F. Mo, G. Liang, Q. Meng, Z. Liu, H. Li, J. Fan, C. Zhi, Energy Environ. Sci. 2019, 12, 706.
- 8P. He, M. Yan, G. Zhang, R. Sun, L. Chen, Q. An, L. Mai, Adv. Energy Mater. 2017, 7, 1601920.
- 9D. Kundu, S. H. Vajargah, L. Wan, B. Adams, D. Prendergast, L. F. Nazar, Energy Environ. Sci. 2018, 11, 881.
- 10C. Xu, B. Li, H. Du, F. Kang, Angew. Chem., Int. Ed. 2012, 51, 933.
- 11D. Chao, W. Zhou, C. Ye, Q. Zhang, Y. Chen, L. Gu, K. Davey, S.-Z. Qiao, Angew. Chem., Int. Ed. 2019, 58, 7823.
- 12N. Zhang, F. Cheng, Y. Liu, Q. Zhao, K. Lei, C. Chen, X. Liu, J. Chen, J. Am. Chem. Soc. 2016, 138, 12894.
- 13M. H. Alfaruqi, V. Mathew, J. Gim, S. Kim, J. Song, J. P. Baboo, S. H. Choi, J. Kim, Chem. Mater. 2015, 27, 3609.
- 14S. H. Kim, S. M. Oh, J. Power Sources 1998, 72, 150.
- 15J. Lee, J. B. Ju, W. I. Cho, B. W. Cho, S. H. Oh, Electrochim. Acta 2013, 112, 138.
- 16M. H. Alfaruqi, J. Gim, S. Kim, J. Song, J. Jo, S. Kim, V. Mathew, J. Kim, J. Power Sources 2015, 288, 320.
- 17M. H. Alfaruqi, J. Gim, S. Kim, J. Song, P. Duong Tung, J. Jo, Z. Xiu, V. Mathew, J. Kim, Electrochem. Commun. 2015, 60, 121.
- 18H. Zhang, Q. Liu, J. Wang, K. Chen, D. Xue, J. Liu, X. Lu, J. Mater. Chem. A 2019, 7, 22079.
- 19W. Sun, F. Wang, S. Y. Hou, C. Y. Yang, X. L. Fan, Z. H. Ma, T. Gao, F. D. Han, R. Z. Hu, M. Zhu, C. S. Wang, J. Am. Chem. Soc. 2017, 139, 9775.
- 20N. Qiu, H. Chen, Z. Yang, S. Sun, Y. Wang, Electrochim. Acta 2018, 272, 154.
- 21R. A. Robinson, R. H. Stokes, Electrolyte Solutions, Courier Corporation, North Chelmsford, MA, USA 2002.
- 22B. J. Mhin, S. Lee, S. J. Cho, K. Lee, K. S. Kim, Chem. Phys. Lett. 1992, 197, 77.
- 23M. Hartmann, T. Clark, R. vanEldik, J. Am. Chem. Soc. 1997, 119, 7843.
- 24M. S. Chae, J. W. Heo, H. H. Kwak, H. Lee, S.-T. Hong, J. Power Sources 2017, 337, 204.
- 25P. Senguttuvan, S.-D. Han, S. Kim, A. L. Lipson, S. Tepavcevic, T. T. Fister, I. D. Bloom, A. K. Burrell, C. S. Johnson, Adv. Energy Mater. 2016, 6, 1600826.
- 26S.-D. Han, S. Kim, D. Li, V. Petkov, H. D. Yoo, P. J. Phillips, H. Wang, J. J. Kim, K. L. More, B. Key, R. F. Klie, J. Cabana, V. R. Stamenkovic, T. T. Fister, N. M. Markovic, A. K. Burrell, S. Tepavcevic, J. T. Vaughey, Chem. Mater. 2017, 29, 4874.
- 27J. Shin, D. S. Choi, H. J. Lee, Y. Jung, J. W. Choi, Adv. Energy Mater. 2019, 9, 1900083.
- 28F. Wang, W. Sun, Z. Shadike, E. Hu, X. Ji, T. Gao, X.-Q. Yang, K. Xu, C. Wang, Angew. Chem., Int. Ed. 2018, 57, 11978.
- 29W. Kaveevivitchai, A. Manthiram, J. Mater. Chem. A 2016, 4, 18737.
- 30S.-D. Han, N. N. Rajput, X. Qu, B. Pan, M. He, M. S. Ferrandon, C. Liao, K. A. Persson, A. K. Burrell, ACS Appl. Mater. Interfaces 2016, 8, 3021.
- 31Y. G. Li, H. J. Dai, Chem. Soc. Rev. 2014, 43, 5257.
- 32Z. Liu, S. Z. El Abedin, F. Endres, Electrochem. Commun. 2015, 58, 46.
- 33M. Chamoun, B. J. Hertzberg, T. Gupta, D. Davies, S. Bhadra, B. Van Tassell, C. Erdonmez, D. A. Steingart, NPG Asia Mater. 2015, 7, e178.
- 34C. Wei, C. Xu, B. Li, H. Du, F. Kang, J. Phys. Chem. Solids 2012, 73, 1487.
- 35S. Komaba, N. Kumagai, S. Chiba, Electrochim. Acta 2000, 46, 31.
- 36M. C. Biesinger, B. P. Payne, A. P. Grosvenor, L. W. M. Lau, A. R. Gerson, R. S. C. Smart, Appl. Surf. Sci. 2011, 257, 2717.
- 37C. D. Wagner, D. A. Zatko, R. H. Raymond, Anal. Chem. 1980, 52, 1445.
- 38M. Q. Fatmi, T. S. Hofer, B. R. Randolf, B. M. Rode, J. Phys. Chem. B 2007, 111, 151.
- 39M. Q. Fatmi, T. S. Hofer, B. M. Rode, Phys. Chem. Chem. Phys. 2010, 12, 9713.
- 40M. Brooker, G. Hancock, B. Rice, J. Shapter, J. Raman Spectrosc. 1989, 20, 683.
- 41G. Walrafen, J. Chem. Phys. 1971, 55, 768.
- 42N. Wen, M. H. Brooker, J. Phys. Chem. 1993, 97, 8608.
- 43E. Finer, F. Franks, M. Tait, J. Am. Chem. Soc. 1972, 94, 4424.
- 44M. Q. Fatmi, T. S. Hofer, B. R. Randolf, B. M. Rode, Phys. Chem. Chem. Phys. 2006, 8, 1675.
- 45M. Q. Fatmi, T. S. Hofer, B. R. Randolf, B. M. Rode, J. Phys. Chem. B 2008, 112, 5788.
- 46D. W. Barnum, Inorg. Chem. 1983, 22, 2297.
- 47G. D. Smith, R. Bell, O. Borodin, R. L. Jaffe, J.Phys. Chem. A 2001, 105, 6506.