In Situ Investigation on the Protein Corona Formation of Quantum Dots by Using Fluorescence Resonance Energy Transfer
Shaohua Qu
State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU), Xi'an, 710072 China
Search for more papers by this authorFangying Sun
State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU), Xi'an, 710072 China
Search for more papers by this authorZihan Qiao
State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU), Xi'an, 710072 China
Search for more papers by this authorJuanmin Li
State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU), Xi'an, 710072 China
Search for more papers by this authorCorresponding Author
Li Shang
State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU), Xi'an, 710072 China
NPU-QMUL Joint Research Institute of Advanced Materials and Structures (JRI-AMAS), Northwestern Polytechnical University, Xi'an, 710072 China
E-mail: [email protected]
Search for more papers by this authorShaohua Qu
State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU), Xi'an, 710072 China
Search for more papers by this authorFangying Sun
State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU), Xi'an, 710072 China
Search for more papers by this authorZihan Qiao
State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU), Xi'an, 710072 China
Search for more papers by this authorJuanmin Li
State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU), Xi'an, 710072 China
Search for more papers by this authorCorresponding Author
Li Shang
State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU), Xi'an, 710072 China
NPU-QMUL Joint Research Institute of Advanced Materials and Structures (JRI-AMAS), Northwestern Polytechnical University, Xi'an, 710072 China
E-mail: [email protected]
Search for more papers by this authorAbstract
A fundamental understanding of nanoparticle–protein corona and its interactions with biological systems is essential for future application of engineered nanomaterials. In this work, fluorescence resonance energy transfer (FRET) is employed for studying the protein adsorption behavior of nanoparticles. The adsorption of human serum albumin (HSA) onto the surface of InP@ZnS quantum dots (QDs) with different chirality (d- and l-penicillamine) shows strong discernible differences in the binding behaviors including affinity and adsorption orientation that are obtained upon quantitative analysis of FRET data. Circular dichroism spectroscopy further confirms the differences in the conformational changes of HSA upon interaction with d- and l-chiral QD surfaces. Consequently, the formed protein corona on chiral surfaces may affect their following biological interactions, such as possible protein exchange with serum proteins plasma as well as cellular interactions. These results vividly illustrate the potential of the FRET method as a simple yet versatile platform for quantitatively investigating biological interactions of nanoparticles.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
smll201907633-sup-0001-SuppMat.pdf930.6 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1T. Cedervall, I. Lynch, S. Lindman, T. Berggård, E. Thulin, H. Nilsson, K. A. Dawson, S. Linse, Proc. Natl. Acad. Sci. USA 2007, 104, 2050.
- 2A. E. Nel, L. Madler, D. Velegol, T. Xia, E. M. Hoek, P. Somasundaran, F. Klaessig, V. Castranova, M. Thompson, Nat. Mater. 2009, 8, 543.
- 3D. Docter, D. Westmeier, M. Markiewicz, S. Stolte, S. K. Knauer, R. H. Stauber, Chem. Soc. Rev. 2015, 44, 6094.
- 4M. P. Monopoli, C. Aberg, A. Salvati, K. A. Dawson, Nat. Nanotechnol. 2012, 7, 779.
- 5S. Schottler, G. Becker, S. Winzen, T. Steinbach, K. Mohr, K. Landfester, V. Mailander, F. R. Wurm, Nat. Nanotechnol. 2016, 11, 372.
- 6M. Tonigold, J. Simon, D. Estupiñán, M. Kokkinopoulou, J. Reinholz, U. Kintzel, A. Kaltbeitzel, P. Renz, M. P. Domogalla, K. Steinbrink, I. Lieberwirth, D. Crespy, K. Landfester, V. Mailänder, Nat. Nanotechnol. 2018, 13, 862.
- 7S. T. Yang, Y. Liu, Y. W. Wang, A. Cao, Small 2013, 9, 1635.
- 8C. D. Walkey, W. C. Chan, Chem. Soc. Rev. 2012, 41, 2780.
- 9P. C. Ke, S. Lin, W. J. Parak, T. P. Davis, F. Caruso, ACS Nano 2017, 11, 11773.
- 10G. Xu, S. Zeng, B. Zhang, M. T. Swihart, K. T. Yong, P. N. Prasad, Chem. Rev. 2016, 116, 12234.
- 11L. Shang, S. Dong, G. U. Nienhaus, Nano Today 2011, 6, 401.
- 12S. Y. Lim, W. Shen, Z. Gao, Chem. Soc. Rev. 2015, 44, 362.
- 13Z. Li, Q. Sun, Y. Zhu, B. Tan, Z. P. Xu, S. X. Dou, J. Mater. Chem. B 2014, 2, 2793.
- 14H. Li, K. Jin, M. Luo, X. Wang, X. Zhu, X. Liu, T. Jiang, Q. Zhang, S. Wang, Z. Pang, Cells 2019, 8, 881.
- 15L. Shang, G. U. Nienhaus, Acc. Chem. Res. 2017, 50, 387.
- 16X. Wang, M. Wang, R. Lei, S. F. Zhu, Y. Zhao, C. Chen, ACS Nano 2017, 11, 4606.
- 17L. Wang, J. Li, J. Pan, X. Jiang, Y. Ji, Y. Li, Y. Qu, Y. Zhao, X. Wu, C. Chen, J. Am. Chem. Soc. 2013, 135, 17359.
- 18M. Carril, D. Padro, P. Del Pino, C. Carrillo-Carrion, M. Gallego, W. J. Parak, Nat. Commun. 2017, 8, 1542.
- 19B. Fadeel, L. Farcal, B. Hardy, S. Vazquez-Campos, D. Hristozov, A. Marcomini, I. Lynch, E. Valsami-Jones, H. Alenius, K. Savolainen, Nat. Nanotechnol. 2018, 13, 537.
- 20J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed., Springer, New York 2006.
- 21M. Raoufi, M. J. Hajipour, S. M. Kamali Shahri, I. Schoen, U. Linn, M. Mahmoudi, Nanoscale 2018, 10, 1228.
- 22L. Mattera, S. Bhuckory, K. D. Wegner, X. Qiu, F. Agnese, C. Lincheneau, T. Senden, D. Djurado, L. J. Charbonniere, N. Hildebrandt, P. Reiss, Nanoscale 2016, 8, 11275.
- 23L. D. Field, S. A. Walper, K. Susumu, G. Lasarte-Aragones, E. Oh, I. L. Medintz, J. B. Delehanty, Bioconjugate Chem. 2018, 29, 2455.
- 24N. Hildebrandt, C. M. Spillmann, W. R. Algar, T. Pons, M. H. Stewart, E. Oh, K. Susumu, S. A. Diaz, J. B. Delehanty, I. L. Medintz, Chem. Rev. 2017, 117, 536.
- 25C. Röcker, M. Potzl, F. Zhang, W. J. Parak, G. U. Nienhaus, Nat. Nanotechnol. 2009, 4, 577.
- 26P. d. Pino, B. Pelaz, Q. Zhang, P. Maffre, G. U. Nienhaus, W. J. Parak, Mater. Horiz. 2014, 1, 301.
- 27L. Shang, S. Brandholt, F. Stockmar, V. Trouillet, M. Bruns, G. U. Nienhaus, Small 2012, 8, 661.
- 28W. Ma, L. Xu, A. F. de Moura, X. Wu, H. Kuang, C. Xu, N. A. Kotov, Chem. Rev. 2017, 117, 8041.
- 29C. Hao, L. Xu, H. Kuang, C. Xu, Adv. Mater. 2019, 1802075.
- 30X. Gao, B. Han, X. Yang, Z. Tang, J. Am. Chem. Soc. 2019, 141, 13700.
- 31M. Sun, L. Xu, A. Qu, P. Zhao, T. Hao, W. Ma, C. Hao, X. Wen, F. M. Colombari, A. F. de Moura, N. A. Kotov, C. Xu, H. Kuang, Nat. Chem. 2018, 10, 821.
- 32X. Wang, X. Wang, M. Wang, D. Zhang, Q. Yang, T. Liu, R. Lei, S. Zhu, Y. Zhao, C. Chen, Small 2018, 14, 1703982.
- 33C. Hao, R. Gao, Y. Li, L. Xu, M. Sun, C. Xu, H. Kuang, Angew. Chem., Int. Ed. 2019, 58, 7371.
- 34N. Suzuki, Y. Wang, P. Elvati, Z. B. Qu, K. Kim, S. Jiang, E. Baumeister, J. Lee, B. Yeom, J. H. Bahng, J. Lee, A. Violi, N. A. Kotov, ACS Nano 2016, 10, 1744.
- 35R. S. Li, P. F. Gao, H. Z. Zhang, L. L. Zheng, C. M. Li, J. Wang, Y. F. Li, F. Liu, N. Li, C. Z. Huang, Chem. Sci. 2017, 8, 6829.
- 36Z. N. Zhu, W. J. Liu, Z. T. Li, B. Han, Y. L. Zhou, Y. Gao, Z. Y. Tang, ACS Nano 2012, 6, 2326.