Improving the Quality and Luminescence Performance of All-Inorganic Perovskite Nanomaterials for Light-Emitting Devices by Surface Engineering
Zhaohui Shen
Key Laboratory of Luminescence and Optical Information (Beijing Jiaotong University), Ministry of Education, Beijing, 100044 China
Search for more papers by this authorCorresponding Author
Suling Zhao
Key Laboratory of Luminescence and Optical Information (Beijing Jiaotong University), Ministry of Education, Beijing, 100044 China
Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
E-mail: [email protected]
Search for more papers by this authorDandan Song
Key Laboratory of Luminescence and Optical Information (Beijing Jiaotong University), Ministry of Education, Beijing, 100044 China
Search for more papers by this authorZheng Xu
Key Laboratory of Luminescence and Optical Information (Beijing Jiaotong University), Ministry of Education, Beijing, 100044 China
Search for more papers by this authorBo Qiao
Key Laboratory of Luminescence and Optical Information (Beijing Jiaotong University), Ministry of Education, Beijing, 100044 China
Search for more papers by this authorPengjie Song
Key Laboratory of Luminescence and Optical Information (Beijing Jiaotong University), Ministry of Education, Beijing, 100044 China
Search for more papers by this authorQiongyu Bai
Key Laboratory of Luminescence and Optical Information (Beijing Jiaotong University), Ministry of Education, Beijing, 100044 China
Search for more papers by this authorJingyue Cao
Key Laboratory of Luminescence and Optical Information (Beijing Jiaotong University), Ministry of Education, Beijing, 100044 China
Search for more papers by this authorGaoqian Zhang
Key Laboratory of Luminescence and Optical Information (Beijing Jiaotong University), Ministry of Education, Beijing, 100044 China
Search for more papers by this authorWageh Swelm
Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
Search for more papers by this authorZhaohui Shen
Key Laboratory of Luminescence and Optical Information (Beijing Jiaotong University), Ministry of Education, Beijing, 100044 China
Search for more papers by this authorCorresponding Author
Suling Zhao
Key Laboratory of Luminescence and Optical Information (Beijing Jiaotong University), Ministry of Education, Beijing, 100044 China
Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
E-mail: [email protected]
Search for more papers by this authorDandan Song
Key Laboratory of Luminescence and Optical Information (Beijing Jiaotong University), Ministry of Education, Beijing, 100044 China
Search for more papers by this authorZheng Xu
Key Laboratory of Luminescence and Optical Information (Beijing Jiaotong University), Ministry of Education, Beijing, 100044 China
Search for more papers by this authorBo Qiao
Key Laboratory of Luminescence and Optical Information (Beijing Jiaotong University), Ministry of Education, Beijing, 100044 China
Search for more papers by this authorPengjie Song
Key Laboratory of Luminescence and Optical Information (Beijing Jiaotong University), Ministry of Education, Beijing, 100044 China
Search for more papers by this authorQiongyu Bai
Key Laboratory of Luminescence and Optical Information (Beijing Jiaotong University), Ministry of Education, Beijing, 100044 China
Search for more papers by this authorJingyue Cao
Key Laboratory of Luminescence and Optical Information (Beijing Jiaotong University), Ministry of Education, Beijing, 100044 China
Search for more papers by this authorGaoqian Zhang
Key Laboratory of Luminescence and Optical Information (Beijing Jiaotong University), Ministry of Education, Beijing, 100044 China
Search for more papers by this authorWageh Swelm
Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
Search for more papers by this authorAbstract
Lead halide perovskites and their applications in the optoelectronic field have garnered intensive interest over the years. Inorganic perovskites (IHP), though a novel class of material, are considered as one of the most promising optoelectronic materials. These materials are widely used in detectors, solar cells, and other devices, owing to their excellent charge-transport properties, high defect tolerance, composition- and size-dependent luminescence, narrow emission, and high photoluminescence quantum yield. In recent years, numerous encouraging achievements have been realized, especially in the research of CsPbX3 (X = Cl, Br, I) nanocrystals (NCs) and surface engineering. Therefore, it is necessary to summarize the principles and effects of these surface engineering optimization methods. It is also important to scientifically guide the applications and promote the development of perovskites more efficiently. Herein, the principles of surface ligands are reviewed, and various surface treatment methods used in CsPbX3 NCs as well as quantum-dot light-emitting diodes are presented. Finally, a brief outlook on CsPbX3 NC surface engineering is offered, illustrating the present challenges and the direction in which future investigations are intended to obtain high-quality CsPbX3 NCs that can be utilized in more applications.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1L. M. Feng, L. Q. Jiang, M. Zhu, H. B. Liu, X. Zhou, C. H. Li, J. Phys. Chem. Solids 2008, 69, 967.
- 2Y Koji, K Hiroshi, M Takashi, O Tsutomu, I Sumio, Bull. Chem. Soc. Jpn. 1990, 63, 2521.
- 3G. C. Papavassiliou, Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 1996, 286, 231.
10.1080/10587259608042291 Google Scholar
- 4C. K. Møller, Nature 1958, 182, 1436.
- 5D. Weber, Z. Naturforsch. B 1978, 33, 1443.
- 6M. Nikl, K. N. K. Polak, E. Mihbkova, S. Zazubovich, G. P. Pazzi, P. Fabeni, L. Salvini, R. Aceves, M. Barbosa-Flores, R. Perez Salas, M. Gurioli, A. Scacco, J. Lumin. 1997, 72.
- 7A Kojima, K. Teshima, Y. Shirai, T Miyasaka, J. Am. Chem. Soc. 2009, 131, 6050.
- 8M. Liu, M. B. Johnston, H. J. Snaith, Nature 2013, 501, 395.
- 9H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Gratzel, N. G. Park, Sci. Rep. 2012, 2, 591.
- 10A. Kojima, M. Ikegami, K. Teshima, T. Miyasaka, Chem. Lett. 2012, 41, 397.
- 11J. Song, J. Li, X. Li, L. Xu, Y. Dong, H. Zeng, Adv. Mater. 2015, 27, 7162.
- 12 Best Research-Cell Efficiency Chart from NREL, https://www.nrel.gov/pv/cell-efficiency.html (accessed: March 2020).
- 13Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen, Z. Chu, Q. Ye, X. Li, Z. Yin, J. You, Nat. Photonics 2019, 13, 460.
- 14Park, N-G, J. Phys. Chem. Lett. 2013, 4, 2423.
- 15N. Ahn, D. Y. Son, I. H. Jang, S. M. Kang, M. Choi, N-G Park, J. Am. Chem. Soc. 2015, 137, 8696.
- 16C. C. Lin, A. Meijerink, R. S. Liu, J. Phys. Chem. Lett. 2016, 7, 495.
- 17F. Palazon, F. D. Stasio, Q. A. Akkerman, R. Krahne, M. Prato, L. Manna, Chem. Mater. 2016, 28, 2902.
- 18J. Li, L. Xu, T. Wang, J. Song, J. Chen, J. Xue, Y. Dong, B. Cai, Q. Shan, B. Han, H. Zeng, Adv. Mater. 2017, 29, 1603885.
- 19J. Song, T. Fang, J. Li, L. Xu, F. Zhang, B Han, Q. Shan, H. Zeng, Adv. Mater. 2018, 30, 1805409.
- 20E. Yassitepe, Z. Yang, O. Voznyy, Y. Kim, G. Walters, J. A. Castañeda, P. Kanjanaboos, M. Yuan, X. Gong, F. Fan, J. Pan, S. Hoogland, R. Comin, O. M. Bakr, L. A. Padilha, A. F. Nogueira, E. H. Sargent, Adv. Funct. Mater. 2016, 26, 8757.
- 21Y. Shi, W. Wu, H. Dong, G. Li, K. Xi, G. Divitini, C. Ran, F. Yuan, M. Zhang, B. Jiao, X. Hou, Z. Wu, Adv. Mater. 2018, 30, 1800251.
- 22X. Li, D. Yu, F. Cao, Y. Gu, Y. Wei, Y. Wu, J. Song, H. Zeng, Adv. Funct. Mater. 2016, 26, 5903.
- 23J. Zhang, Q. Wang, X. Zhang, J. Jiang, Z. Gao, Z. Jin, S. Liu, RSC Adv. 2017, 7, 36722.
- 24Y. F. Xu, M. Z. Yang, B. X. Chen, X. D. Wang, H. Y. Chen, D. B. Kuang, C. Y. Su, J. Am. Chem. Soc. 2017, 139, 5660.
- 25Y. Wang, X. Li, J. Song, L. Xiao, H. Zeng, H. Sun, Adv. Mater. 2015, 27, 7101.
- 26X. He, P. Liu, S. Wu, Q. Liao, J. Yao, H. Fu, J. Mater. Chem. C 2017, 5, 12707.
- 27A. Pan, B. He, X. Fan, Z. Liu, J. J. Urban, A. P. Alivisatos, L. He, Y. Liu, ACS Nano 2016, 10, 7943.
- 28L. Ruan, W. Shen, A. Wang, Q. Zhou, H. Zhang, Z. Deng, Nanoscale 2017, 9, 7252.
- 29F. Li, Y. Liu, H. Wang, Q. Zhan, Q. Liu, Z. Xia, Chem. Mater. 2018, 30, 8546.
- 30J. Pan, Y. Shang, J. Yin, M. De Bastiani, W. Peng, I. Dursun, L. Sinatra, A. M. El-Zohry, M. N. Hedhili, A. H. Emwas, O. F. Mohammed, Z. Ning, O. M. Bakr, J. Am. Chem. Soc. 2018, 140, 562.
- 31T. Xuan, X. Yang, S. Lou, J. Huang, Y. Liu, J. Yu, H. Li, K. L. Wong, C. Wang, J. Wang, Nanoscale 2017, 9, 15286.
- 32G. Divitini, S. Cacovich, F. Matteocci, L. Cinà, A. Di Carlo, C. Ducati, Nat. Energy 2016, 1, 15012.
- 33Q. Sun, W. J. Yin, J. Am. Chem. Soc. 2017, 139, 14905.
- 34Z. Liang, S. Zhao, Z. Xu, B. Qiao, P. Song, D. Gao, X. Xu, ACS Appl. Mater. Interfaces 2016, 8, 28824.
- 35L. H. Qu, X. G. Peng, J. Am. Chem. Soc. 2002, 124, 2049.
- 36L. Wu, H. Hu, Y. Xu, S. Jiang, M. Chen, Q. Zhong, D. Yang, Q. Liu, Y. Zhao, B. Sun, Q. Zhang, Y. Yin, Nano Lett. 2017, 17, 5799.
- 37G. Nedelcu, L. Protesescu, S. Yakunin, M. I. Bodnarchuk, M. J. Grotevent, M. V. Kovalenko, Nano Lett. 2015, 15, 5635.
- 38S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. De Luca, M. Fiebig, W. Heiss, M. V. Kovalenko, Nat. Commun. 2015, 6, 8056.
- 39J. Shamsi, Z. Dang, P. Bianchini, C. Canale, F. D. Stasio, R. Brescia, M. Prato, L. Manna, J. Am. Chem. Soc. 2016, 138, 7240.
- 40M. C. Weidman, M. Seitz, S. D. Stranks, W. A. Tisdale, ACS Nano 2016, 10, 7830.
- 41D. Zhang, Y. Yang, Y. Bekenstein, Y. Yu, N. A. Gibson, A. B. Wong, S. W. Eaton, N. Kornienko, Q. Kong, M. Lai, A. P. Alivisatos, S. R. Leone, P. Yang, J. Am. Chem. Soc. 2016, 138, 7236.
- 42H. Huang, M. Liu, J. Li, L. Luo, J. Zhao, Z. Luo, X. Wang, Z. Ye, H. He, J. Zeng, Nanoscale 2017, 9, 104.
- 43Z. Wei, A. Perumal, R. Su, S. Sushant, J. Xing, Q. Zhang, S. T. Tan, H. V. Demir, Q. Xiong, Nanoscale 2016, 8, 18021.
- 44S. Sun, D. Yuan, Y. Xu, A. Wang, Z. Deng, ACS Nano 2016, 10, 3648.
- 45M. Chen, H. Hu, Y. Tan, N. Yao, Q. Zhong, B. Sun, M. Cao, Q. Zhang, Y. Yin, Nano Energy 2018, 53, 559.
- 46D. Yang, M. Cao, Q. Zhong, P. Li, X. Zhang, Q. Zhang, J. Mater. Chem. C. 2019, 7, 757.
- 47L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, M. V. Kovalenko, Nano Lett. 2015, 15, 3692.
- 48Y. Wu, C. Wei, X. Li, Y. Li, S. Qiu, W. Shen, B. Cai, Z. Sun, D. Yang, Z. Deng, H. Zeng, ACS Energy Lett. 2018, 3, 2030.
- 49H. Wu, Y. Zhang, M. Lu, X. Zhang, C. Sun, T. Zhang, V. L. Colvin, W. W Yu, Nanoscale 2018, 10, 4173.
- 50Q. A. Akkerman, V. D. Innocenzo, S Accornero, A Scarpellini, A Petrozza, M Prato, L Manna, J. Am. Chem. Soc. 2015, 137, 10276.
- 51S. Ananthakumar, J. R. Kumar, S. M. Babu, J. Photonics Energy 2016, 6, 042001.
- 52M. I. Saidaminov, J. Almutlaq, S. Sarmah, I. Dursun, A. A. Zhumekenov, R. Begum, J. Pan, N. Cho, O. F. Mohammed, O. M. Bakr, ACS Energy Lett. 2016, 1, 840.
- 53D. Gao, B. Qiao, Z. Xu, D. D. Song, P. J. Song, Z. Q. Liang, Z. H. Shen, J. Y. Cao, J. J. Zhang, S. L Zhao, J. Phys. Chem. C 2017, 121, 20387.
- 54C. Guhrenz, A. Benad, C. Ziegler, D. Haubold, N. Gaponik, A. Eychmüller, Chem. Mater. 2016, 28, 9033.
- 55C. Jia, H. Li, X. Meng, H. Li, Chem. Commun. 2018, 54, 6300.
- 56Y. Zhang, M. I Saidaminov, I. Dursun, H. Yang, B. Murali, E. Alarousu, E. Yengel, B. A. Alshankiti, O. M. Bakr, O. F. Mohammed, J. Phys. Chem. Lett. 2017, 8, 961.
- 57J. Chen, S. Zhou, S. Jin, H. Q. Li, T. Y. Zhai, J. Mater. Chem. C 2016, 4, 11.
- 58Z. Fang, M. Shang, X. Hou, Y. Zheng, Z. Du, Z. Yang, K.-C. Chou, W. Yang, Z. L. Wang, Y. Yang, Nano Energy. 2019, 61, 389.
- 59X. Li, Y. Wu, S. Zhang, B. Cai, Y. Gu, J. Song, H. Zeng, Adv. Funct. Mater. 2016, 26, 2435.
- 60H. Ayatullah, G. Murtaza, S. Muhammad, S. Naeem, M. N. Khalid, A. Manzar, Acta Phys. Pol., A. 2013, 124, 102.
10.12693/APhysPolA.124.102 Google Scholar
- 61W. S. Yang, B. W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. Uk. Lee, S. S. Shin, J. W. Seo, E. K. Kim, J. H. Noh, S. Il. Seok, Science 2017, 356, 1376.
- 62P. Ramasamy, D. H. Lim, B. Kim, S. H. Lee, M. S. Lee, J. S. Lee, Chem. Commun. 2016, 52, 2067.
- 63W. J. Yin, Y. Yan, S. H. Wei, J. Phys. Chem. Lett. 2014, 5, 3625.
- 64D. Zhang, Y. Yu, Y. Bekenstein, A. B. Wong, A. P. Alivisatos, P. Yang, J. Am. Chem. Soc. 2016, 138, 13155.
- 65M. Imran, F. Di Stasio, Z. Dang, C. Canale, A. H. Khan, J. Shamsi, R. Brescia, M. Prato, L. Manna, Chem. Mater. 2016, 28, 6450.
- 66X. Li, F. Cao, D. Yu, J. Chen, Z. Sun, Y. Shen, Y. Zhu, L. Wang, Y. Wei, Y. Wu, H. Zeng, Small 2017, 13, 1603996.
- 67Z. Shen, P. Song, B. Qiao, J. Y. Cao, Q. Bai, D. D. Song, Z. Xu, S. L. Zhao, G. Zhang, Y. Wu, Chin. Phys. B 2019, 28, 086102.
- 68F. Di Stasio, S. Christodoulou, N. Huo, G. Konstantatos, Chem. Mater. 2017, 29, 7663.
- 69Y. Li, H. Huang, Y. Xiong, S. V. Kershaw, A. L. Rogach, Angew. Chem., Int. Ed. 2018, 57, 5833.
- 70Q. Pan, H. Hu, Y. Zou, M. Chen, L. Wu, D. Yang, X. L. Yuan, J. Fan, B. Q. Sun, Q. Zhang, J. Mater. Chem. C 2017, 5, 10947.
- 71H. Liu, Z. Wu, H. Gao, J. Shao, H Zou, D. Yao, Y. Liu, H. Zhang, B. Yang, ACS Appl. Mater. Interfaces 2017, 9, 42919.
- 72M. Chen, Y. Zou, L. Wu, Q. Pan, D. Yang, H. Hu, Y. Tan, Q. Zhong, Y. Xu, H. Liu, B. Sun, Q. Zhang, Adv. Funct. Mater. 2017, 27, 1701121.
- 73Y. Tong, E. Bladt, M. F. Ayguler, A. Manzi, K. Z. Milowska, V. A. Hintermayr, P. Docampo, S. Bals, A. S. Urban, L. Polavarapu, J. Feldmann, Angew. Chem., Int. Ed. 2016, 55, 13887.
- 74A. Waleed, M. M. Tavakoli, L. Gu, S. Hussain, D. Zhang, S. Poddar, Z. Wang, R. Zhang, Z. Fan, Nano Lett. 2017, 17, 4951.
- 75Q. A. Akkerman, S. Park, E. Radicchi, F. Nunzi, E. Mosconi, F. De Angelis, R. Brescia, P. Rastogi, M. Prato, L Manna, Nano Lett. 2017, 17, 1924.
- 76L. Gomez, C. de Weerd, J. L. Hueso, T. Gregorkiewicz, Nanoscale 2017, 9, 631.
- 77Z. Shen, B. Qiao, Z. Xu, D. Song, D. Gao, P. Song, J. Cao, Q. Bai, Y. Wu, S. Zhao, Nanoscale 2019, 11, 4008.
- 78Z. Long, H. Ren, J. Sun, J. Ouyang, N. Na, Chem. Commun. 2017, 53, 9914.
- 79M. I. Cohen, K. F. Young, T. T. Chang, W. S. Brower, J. Appl. Phys. 1971, 42, 5267.
- 80K. Gesi, K. Ozawa, S. Hirotsu, J. Phys. Soc. Jpn. 1975, 38, 463.
- 81D. Zhang, S. W. Eaton, Y. Yu, L. Dou, P. Yang, J. Am. Chem. Soc. 2015, 137, 9230.
- 82G. H. Kwei, A. C. Lawson, S. J. L. Billinge, J. Phys. Chem. 1993, 97, 2368.
- 83D. E. Scaife, P. F. Weller, W. G. Fisher, J. Solid State Chem. 1974, 9, 308.
- 84https://arxiv.xilesou.top/abs/1702.05382 (accessed: March 2020).
- 85Y. Su, Q. Zeng, X. Chen, W. Ye, L. She, X. Gao, Z. Ren, X. Li, J. Mater. Chem. C 2019, 7, 7548.
- 86Z. Liu, Y. Bekenstein, X. Ye, S. C. Nguyen, J. Swabeck, D. Zhang, S. T. Lee, P. Yang, W. Ma, A. P. Alivisatos, J. Am. Chem. Soc. 2017, 139, 5309.
- 87G. Li, H. Wang, Z. Zhu, Y. Chang, T. Zhang, Z. Song, Y. Jiang, Chem. Commun. 2016, 52, 11296.
- 88J. De Roo, M. Ibanez, P. Geiregat, G. Nedelcu, W. Walravens, J. Maes, J. C. Martins, I. Van Driessche, M. V. Kovalenko, Z. Hens, ACS Nano 2016, 10, 2071.
- 89B. Qiao, P. Song, J. Cao, S. Zhao, Z. Shen, G. Di, Z. Liang, Z. Xu, D. Song, X. Xu, Nanotechnology 2017, 28, 445602.
- 90S. Huang, Z. Li, B. Wang, N Zhu, C. Zhang, L. Kong, Q. Zhang, A. Shan, L. Li, ACS Appl. Mater. Interfaces 2017, 9, 7249.
- 91Y. Wang, Y. Ren, S. Zhang, J. Wu, J. Song, X. Li, J. Xu, C. H. Sow, H. Zeng, H. Sun, Commun. Phys. 2018, 1, 96.
- 92N. Aristidou, C. Eames, I. Sanchez-Molina, X. Bu, J. Kosco, M. S. Islam, S. A. Haque, Nat. Commun. 2017, 8, 15218.
- 93D. Bryant, N. Aristidou, S. Pont, I. Sanchez-Molina, T. Chotchunangatchaval, S. Wheeler, J. R. Durrant, S. A. Haque, Energy Environ. Sci. 2016, 9, 1655.
- 94X. X. Ma, Z. S. Li, Appl. Surf. Sci. 2018, 428, 140.
- 95J. B. Hoffman, A. L. Schleper, P. V. Kamat, J. Am. Chem. Soc. 2016, 138, 8603.
- 96H. Huang, M. I Bodnarchuk, S. V. Kershaw, M. V. Kovalenko, A. L. Rogach, ACS Energy Lett. 2017, 2, 2071.
- 97W. Lv, L. Li, M. Xu, J. Hong, X. Tang, L. Xu, Y. Wu, R. Zhu, R. Chen, W. Huang, Adv. Mater. 2019, 31, 1900682.
- 98E. Mosconi, D. Meggiolar, H. J. Snaith, S. D. Strank, F. De Angelis, Energy Environ. Sci. 2016, 9, 3180.
- 99R. Gottesman, L. Gouda, B. S. Kalanoor, E. Haltzi, S. Tirosh, E. Rosh-Hodesh, Y. Tischler, A. Zaban, C. Quarti, E. Mosconi, F. De Angelis, J. Phys. Chem. Lett. 2015, 6, 2332.
- 100W. Nie, J. C. Blancon, A. J. Neukirch, K. Appavoo, H. Tsai, M. Chhowalla, M. A. Alam, M. Y. Sfeir, C. Katan, J. Even, S. Tretiak, J. J. Crochet, G. Gupta, A. D. Mohite, Nat. Commun. 2016, 7, 11574.
- 101E. T. Hoke, D. J. Slotcavage, E. R. Dohner, A. R. Bowring, H. I. Karunadasa, M. D. McGehee, Chem. Sci. 2015, 6, 613.
- 102D. Amgar, A. Stern, D. Rotem, D. Porath, L. Etgar, Nano Lett. 2017, 17, 1007.
- 103M. S. Kirschner, B. T. Diroll, P. Guo, S. M. Harvey, W. Helweh, N. C. Flanders, A. Brumberg, N. E. Watkins, A. A. Leonard, A. M. Evans, M. R. Wasielewski, W. R. Dichtel, X. Zhang, L. X. Chen, R. D. Schaller, Nat. Commun. 2019, 10, 504.
- 104J. Xue, D. Yang, B. Cai, X. Xu, J. Wang, H. Ma, X. Yu, G. Yuan, Y. Zou, J. Song, H. Zeng, Adv. Funct. Mater. 2019, 29, 1807922.
- 105D. Yang, X. Li, W. Zhou, S. Zhang, C. Meng, Y. Wu, Y. Wang, H. Zeng, Adv. Mater. 2019, 1900767.
- 106D. Yang, X. Li, Y. Wu, C. Wei, Z. Qin, C. Zhang, Z. Sun, Y. Li, Y. Wang, H. Zeng, Adv. Opt. Mater. 2019, 7, 1900276.
- 107G. Almeida1, I. Infante, L. Manna, Science 2019, 364, 833.
- 108S. Gonzalez-Carrero, R. E. Galian, J. Perez-Prieto, Opt. Express. 2016, 24, A285.
- 109H. Uratani, K. Yamashita, J. Phys. Chem. Lett. 2017, 8, 742.
- 110J. M. Azpiroz, E. Mosconi, J. Bisquert, F. De Angelis, Energy Environ. Sci. 2015, 8, 2118.
- 111S. Fischer, N. D. Bronstein, J. K. Swabeck, E. M. Chan, A. P. Alivisatos, Nano Lett. 2016, 16, 7241.
- 112K. Miszta, F. Greullet, S. Marras, M. Prato, A. Toma, M. Arciniegas, L. Manna, R. Krahne, Nano Lett. 2014, 14, 2116.
- 113F. Palazon, Q. A. Akkerman, M. Prato, L. Manna, ACS Nano 2016, 10, 1224.
- 114J. Pan, L. N. Quan, Y. Zhao, W. Peng, B. Murali, S. P. Sarmah, M. Yuan, L. Sinatra, N. M. Alyami, J. Liu, E. Yassitepe, Z. Yang, O. Voznyy, R. Comin, M. N. Hedhili, O. F. Mohammed, Z. H. Lu, D. H. Kim, E. H. Sargent, O. M. Bakr, Adv. Mater. 2016, 28, 8718.
- 115J. Tang, K. W. Kemp, S. Hoogland, K. S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K. W. Chou, A. Fischer, A. Amassian, J. B. Asbury, E. H. Sargent, Nat. Mater. 2011, 10, 765.
- 116M. Imran, P. Ijaz, L. Goldoni, D. Maggioni, U. Petralanda, M. Prato, G. Almeida, I. Infante, L. Manna, ACS Energy Lett. 2019, 4, 819.
- 117H. C. Yoon, S. Lee, J. K. Song, H. Yang, Y. R. Do, ACS Appl. Mater. Interfaces 2018, 10, 11756.
- 118Z. Li, L. Kong, S. Huang, L. Li, Angew. Chem., Int. Ed. 2017, 56, 8134.
- 119D. Chen, F. Zhao, H. Qi, M. Rutherford, X. Peng, Chem. Mater. 2010, 22, 1437.
- 120W. Nan, Y. Niu, H. Qin, F. Cui, Y. Yang, R. Lai, W. Lin, X. Peng, J. Am. Chem. Soc. 2012, 134, 19685.
- 121T. Ahmed, S. Seth, A. Samanta, Chem. Mater. 2018, 30, 3633.
- 122T. Udayabhaskararao, M. Kazes, L. Houben, H. Lin, D. Oron, Chem. Mater. 2017, 29, 1302.
- 123Y. Kim, E. Yassitepe, O. Voznyy, R. Comin, G. Walters, X. Gong, P. Kanjanaboos, A. F. Nogueira, E. H. Sargent, ACS Appl. Mater. Interfaces 2015, 7, 25007.
- 124Z. Ning, O. Voznyy, J. Pan, S. Hoogland, V. Adinolfi, J. Xu, M. Li, A. R. Kirmani, J. P. Sun, J. Minor, K. W. Kemp, K. H. Dong, L. Rollny, A. Labelle, G. Carey, B. Sutherland, I. Hill, A. Amassian, H. Liu, J. Tang, O. M. Bakr, E. H. Sargent, Nat. Mater. 2014, 13, 822.
- 125N. Yantara, S. Bhaumik, F. Yan, D. Sabba, H. A. Dewi, N. Mathews, P. P. Boix, H. V. Demir, S. Mhaisalkar, J. Phys. Chem. Lett. 2015, 6, 4360.
- 126Z. J. Yong, S. Q. Guo, J. P. Ma, J. Y. Zhang, Z. Y. Li, Y. M. Chen, B. B. Zhang, Y. Zhou, J. Shu, J. L. Gu, L. R. Zheng, O. M. Bakr, H. T. Sun, J. Am. Chem. Soc. 2018, 140, 9942.
- 127X. Zhang, H. Wang, Y. Hu, Y. Pei, S. Wang, Z. Shi, V. L. Colvin, S. Wang, Y. Zhang, W. W. Yu, J. Phys. Chem. Lett. 2019, 10, 1750.
- 128S. G. Zou, Y. S. Liu, J. H. Li, C. P. Liu, R. Feng, F. L. Jiang, Y. X. Li, J. Z. Song, H. B. Zeng, M. C. Hong, X. Y Chen, J. Am. Chem. Soc. 2017, 139, 11443.
- 129D. H. Fabini, G. Laurita, J. S. Bechtel, C. C. Stoumpos, H. A. Evans, A. G. Kontos, Y. S. Raptis, P. Falaras, A. Van der Ven, M. G. Kanatzidis, R. Seshadri, J. Am. Chem. Soc. 2016, 138, 11820.
- 130A. B. F. Vitoreti, S. Agouram, M. Solis de la Fuente, V. Muñoz-Sanjosé, M. A. Schiavon, I. Mora-Seró, J. Phys. Chem. C 2018, 122, 14222.
- 131W. van der Stam, J. J. Geuchies, T. Altantzis, Karel, H. W. van den Bos, J. D. Meeldijk, S. Van Aert, S. Bals, D. Vanmaekelbergh, C. de mello Donega, J. Am. Chem. Soc. 2017, 139, 4087.
- 132F. Li, Z. Xia, C. Pan, Y. Gong, L. Gu, Q. Liu, J. Z. Zhang, ACS Appl. Mater. Interfaces 2018, 10, 11739.
- 133C. Bi, S. Wang, Q. Li, S. V. Kershaw, J. Tian, A. L. Rogach, J. Phys. Chem. Lett. 2019, 10, 943.
- 134D. P. Nenon, K. Pressler, J. Kang, B. A. Koscher, J. H. Olshansky, W. T. Osowiecki, M. A. Koc, L. W. Wang, A. P. Alivisatos, J. Am. Chem. Soc. 2018, 140, 17760.
- 135J. Li, S. H. Wei, S. S. Li, J. B. Xia, Phys. Rev. B. 2008, 77, 113304.
- 136A. H. Slavney, T. Hu, A. M. Lindenberg, H. I. Karunadasa, J. Am. Chem. Soc. 2016, 138, 2138.
- 137J. Luo, S. Li, H. Wu, Y. Zhou, Y. Li, J. Liu, J. Li, K. Li, F. Yi, G. Niu, J. Tang, ACS Photonics. 2018, 5, 398.
- 138Y. Wei, X. Deng, Z, X, X, C, S. Liang, P. Ma, Z, H, Z. Cheng, J. Lin, Adv. Funct. Mater. 2017, 27, 1703535.
- 139H. Zhang, X. Wang, Q. Liao, Z. Xu, H. Li, L. Zheng, H. Fu, Adv. Funct. Mater. 2017, 27, 1604382.
- 140N. Ding, D. Zhou, X. Sun, W. Xu, H. Xu, G. Pan, D. Li, S. Zhang, B. Dong, H. Song, Nanotechnology 2018, 29, 345703.
- 141N. C. Anderson, M. P. Hendricks, J. J. Choi, J. S. Owen, J. Am. Chem. Soc. 2013, 135, 18536.
- 142M. Hua, S. Zhang, B. Pan, W. Zhang, L. Lv, Q. Zhang, J. Hazard. Mater. 2012, 211–212, 317.
- 143H. T. Yang, Y. K. Su, C. M. Shen, T. Z. Yang, H. J. Gao, Surf. Interface Anal. 2004, 36, 155.
- 144J. J. Urban, J. E. Spanier, L. Ouyang, W. S Yun, H. K. Park, Adv. Mater. 2003, 15, 423.
- 145J. J. Urban, W. S. Yun, Q. Gu, H. K. Park, J. Am. Chem. Soc. 2002, 124, 1186.
- 146A. Wang, Y. Guo, F. Muhammad, Z. Deng, Chem. Mater. 2017, 29, 6493.
- 147M. Koolyk, D. Amgar, S. Aharon, L. Etgar, Nanoscale 2016, 8, 6403.
- 148V. K. Ravi, P. K. Santra, N. Joshi, J. Chugh, S. K. Singh, H. Rensmo, P. Ghosh, A. Nag, J. Phys. Chem. Lett. 2017, 8, 4988.
- 149M. C. Weidman, A. J. Goodman, W. A. Tisdale, Chem. Mater. 2017, 29, 5019.
- 150G. Almeida, L. Goldoni, Q. Akkerman, Z. Dang, A. H. Khan, S. Marras, I. Moreels, L. Manna, ACS Nano 2018, 12, 1704.
- 151Q. A. Akkerman, S. G. Motti, A. R. Srimath Kandada, E. Mosconi, V. D'Innocenzo, G. Bertoni, S. Marras, B. A. Kamino, L. Miranda, F. De Angelis, A. Petrozza, M. Prato, L. Manna, J. Am. Chem. Soc. 2016, 138, 1010.
- 152L. Yang, D. Li, C. Wang, W. Yao, H. Wang, K. Huang, J. Nanopart. Res. 2017, 19, 258.
- 153B. A. Koscher, J. K. Swabeck, N. D. Bronstein, A. P. Alivisatos, J. Am. Chem. Soc. 2017, 139, 6566.
- 154R. K. Behera, S. Das Adhikari, S. K. Dutta, A. Dutta, N. Pradhan, J. Phys. Chem. Lett. 2018, 9, 6884.
- 155J. Song, L. Xu, J. Li, J. Xue, Y. Dong, X. Li, H. Zeng, Adv. Mater. 2016, 28, 4861.
- 156J. Y. Woo, Y. Kim, J. Bae, T. G. Kim, J. W. Kim, D. C. Lee, S. Jeong, Chem. Mater. 2017, 29, 7088.
- 157X. Yuan, S. Ji, M. C. De Siena, L. Fei, Z Zhao, Y. Wang, H. Li, J. Zhao, D. R. Gamelin, Chem. Mater. 2017, 29, 8003.
- 158L. Wu, Q. Zhong, D. Yang, M. Chen, H. Hu, Q. Pan, H. Liu, M. Cao, Y. Xu, B. Sun, Q. Zhang, Langmuir 2017, 33, 12689.
- 159L. Ruan, W. Shen, A. Wang, A. Xiang, Z. Deng, J. Phys. Chem. Lett. 2017, 8, 3853.
- 160Y. Tan, Y. Zou, L. Wu, Q. Huang, D. Yang, M. Chen, M. Ban, C. Wu, T. Wu, S. Bai, T. Song, Q. Zhang, B. Sun, ACS Appl. Mater. Interfaces 2018, 10, 3784.
- 161A. Dutta, S. K. Dutta, S. Das Adhikari, N. Pradhan, ACS Energy Lett. 2018, 3, 329.
- 162J. Y. Woo, S. Lee, S. Lee, W. D. Kim, K. Lee, K. Kim, H. J. An, D. C. Lee, S. Jeong, J. Am. Chem. Soc. 2016, 138, 876.
- 163W. Koh, S. Park, Y. Ham, ChemistrySelect 2016, 1, 3479.
- 164F. Liu, Y. Zhang, C. Ding, S. Kobayashi, T. Izuishi, N. Nakazawa, T. Toyoda, T. Ohta, S. Hayase, T. Minemoto, K. Yoshino, S. Dai, Q. Shen, ACS Nano 2017, 11, 10373.
- 165M. Imran, V. Caligiuri, M. Wang, L. Goldoni, M. Prato, R. Krahne, L. De Trizio, L. Manna, J. Am. Chem. Soc. 2018, 140, 2656.
- 166C. Wang, A. S. Chesman, J. J. Jasieniak, Chem. Commun. 2016, 53, 232.
- 167F. Krieg, S. T. Ochsenbein, S. Yakunin, S. Ten Brinck, P. Aellen, A. Suess, B. Clerc, D. Guggisberg, O. Nazarenko, Y. Shynkarenko, S. Kumar, C. J. Shih, I. Infante, M. V. Kovalenko, ACS Energy Lett. 2018, 3, 641.
- 168T. Chiba, Y. Hayashi, H. Ebe, K. Hoshi, J. Sato, S. Sato, Y.-J. Pu, S. Ohisa, J. Kido, Nat. Photonics. 2018, 12, 681.
- 169C. Lu, H. Li, K. Kolodziejski, C. Dun, W. Huang, D. Carroll, S. M. Geyer, Nano Res. 2018, 11, 762.
- 170P. Schapotschnikow, B. Hommersom, T. J. H. Vlugt, J. Phys. Chem. C 2009, 113, 12690.
- 171J. Y. Rempel, B. L. Trout, M. G. Bawendi, K. F. Jensen, J. Phys. Chem. B 2006, 110, 18007.
- 172S. Huang, B. Wang, Q. Zhang, Z. Li, A. Shan, L. Li, Adv. Opt. Mater. 2018, 6, 1701106.
- 173M. V. Kovalenko, M. I. Bodnarchuk, D. V. Talapin, J. Am. Chem. Soc. 2010, 132, 15124.
- 174J. Pan, S. P. Sarmah, B. Murali, I. Dursun, W. Peng, M. R. Parida, J. Liu, L. Sinatra, N. Alyami, C. Zhao, E. Alarousu, T. K. Ng, B. S Ooi, O. M. Bakr, O. F. Mohammed, J. Phys. Chem. Lett. 2015, 6, 5027.
- 175G. Almeida, O. J. Ashton, L. Goldoni, D. Maggioni, U. Petralanda, N. Mishra, Q. A. Akkerman, I. Infante, H. J. Snaith, L. Manna, J. Am. Chem. Soc. 2018, 140, 14878.
- 176S. Wei, Y. Yang, X. Kang, L. Wang, L. Huang, D. Pan, Chem. Commun. 2016, 52, 7265.
- 177S. Wei, Y. Yang, X. Kang, L. Wang, L. Huang, D. Pan, Inorg. Chem. 2017, 56, 2596.
- 178F. Palazon, G. Almeida, Q. A. Akkerman, L. De Trizio, Z. Dang, M. Prato, L. Manna, Chem. Mater. 2017, 29, 4167.
- 179F. Palazon, C. Urso, L. De Trizio, Q. Akkerman, S. Marras, F. Locardi, I. Nelli, M. Ferretti, M. Prato, L. Manna, ACS Energy Lett. 2017, 2, 2445.
- 180E. A. Gaulding, J. Hao, H. S. Kang, E. M. Miller, S. N. Habisreutinger, Q. Zhao, A. Hazarika, P. C. Sercel, J. M. Luther, J. L. Blackburn, Adv. Mater. 2019, 31, 1902250.
- 181A. Swarnkar, A. R. Marshall, E. M. Sanehira, B. D. Chernomordik, D. T. Moore, J. A. Christians, T. Chakrabarti, J. M. Luther, Science 2016, 354, 92.
- 182E. M. Sanehira, A. R. Marshall, J. A. Christians, S. P. Harvey, P. N. Ciesielski, L. M. Wheeler, P. Schulz, L. Y. Lin, M. C. Beard, J. M. Luther, Sci. Adv. 2017, 3, eaao4204.
- 183M. M. Tavakoli, M. Nasilowski, J. Zhao, M. G. Bawendi, J. Kong, Small Methods 2019, 3, 1900449.
- 184B. Han, B. Cai, Q. Shan, J. Song, J. Li, F. Zhang, J. Chen, T. Fang, Q. Ji, X. Xu, H. Zeng, Adv. Funct. Mater. 2018, 28, 1804285.
- 185X. Zhang, H. Lin, H. Huang, C. Reckmeier, Y. Zhang, W. C. Choy, A. L. Rogach, Nano Lett. 2016, 16, 1415.
- 186A. Swarnkar, R. Chulliyil, V. K. Ravi, M. Irfanullah, A. Chowdhury, A. Nag, Angew. Chem., Int. Ed. 2015, 54, 15424.
- 187T. Chiba, K. Hoshi, Y. J. Pu, Y. Y. A. Takeda, Y. Hayashi, S. Ohisa, S. Kawata, J. Kido, ACS Appl. Mater. Interfaces 2017, 9, 18054.
- 188B. N. Pal, Y. Ghosh, S. Brovelli, R. Laocharoensuk, V. I. Klimov, J. A. Hollingsworth, H. Htoon, Nano Lett. 2012, 12, 331.
- 189A. Dong, X. Ye, J. Chen, Y. Kang, T. Gordon, J. M. Kikkawa, C. B. Murray, J. Am. Chem. Soc. 2011, 133, 998.
- 190A. Nag, M. V. Kovalenko, J. S. Lee, W. Liu, B. Spokoyny, D. V. Talapin, J. Am. Chem. Soc. 2011, 133, 10612.
- 191L. Zhang, X. Yang, Q. Jiang, P. Wang, Z. Yin, X. Zhang, H. Tan, Y. M. Yang, M. Wei, B. R. Sutherland, E. H. Sargent, J. You, Nat. Commun. 2017, 8, 15640.
- 192N. Wang, L. Cheng R Ge, S. Zhang, Y. Miao, W. Zou, C. Yi, Y. Sun, Y. Cao, R. Yang, Y. Wei, Q. Guo, Y. Ke, M. Yu, Y. Jin, Y. Liu, Q. Ding, D. Di, L. Yang, G. Xing, H. Tian, C. Jin, F Gao, R. H. Friend, J. W. Huang, W. Huang, Nat. Photonics 2016, 10, 699.
- 193Z. Xiao, R. A. Kerner, L. Zhao, N. L. Tran, K. M. Lee, T. W. Koh, G. D. Scholes, B. P. Rand, Nat. Photonics 2017, 11, 108.
- 194J. Song, J. Li, L. Xu, J. Li, F. Zhang, B. Han, Q. Shan, H. Zeng, Adv. Mater. 2018, 30, 1800764.
- 195G. Li, J. Huang, Y. Li, J. Tang, Y. Jiang, Nano Res. 2019, 12, 109.
- 196G. Li, F. W. Rivarola, N. J. Davis, N. S. Bai, T. C. Jellicoe, F. de la Pena, S. Hou, C. Ducati, F. Gao, R. H. Friend, N. C. Greenham, Z. K. Tan, Adv. Mater. 2016, 28, 3528.
- 197D. P. Birnie, J. Mater. Res. 2001, 16, 1145.