Effective Stabilization of a High-Loading Sulfur Cathode and a Lithium-Metal Anode in Li-S Batteries Utilizing SWCNT-Modulated Separators
Chi-Hao Chang
Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712 USA
Search for more papers by this authorSheng-Heng Chung
Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712 USA
Search for more papers by this authorCorresponding Author
Arumugam Manthiram
Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712 USA
E-mail: [email protected]Search for more papers by this authorChi-Hao Chang
Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712 USA
Search for more papers by this authorSheng-Heng Chung
Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712 USA
Search for more papers by this authorCorresponding Author
Arumugam Manthiram
Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712 USA
E-mail: [email protected]Search for more papers by this authorGraphical Abstract
A custom single-wall carbon nanotube (SWCNT)-modulated separator is employed to directly suppress the polysulfide migration and indirectly protect the lithium-metal anode from severe polysulfide contamination. The conductive sp2-carbon scaffold continuously reactivates and reutilizes the trapped active material, so the SWCNT-modulated separator provides a facile way to facilitate the implementation of pure sulfur cathodes with high sulfur contents and loadings.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
smll201502505-sup-0001-S1.pdf1.7 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) A. Manthiram, Y. Fu, S.-H. Chung, C. Zu, Y.-S. Su, Chem. Rev. 2014, 114, 11751; b) A. Manthiram, S.-H. Chung, C. Zu, Adv. Mater. 2015, 27, 1980; c) S. Urbonaite, T. Poux, P. Novák, Adv. Energy Mater. 2015, 5, 1500118; d) A. Rosenman, E. Markevich, G. Salitra, D. Aurbach, A. Garsuch, F. F. Chesneau, Adv. Energy Mater. 2015, 5, 1500212.
- 2S. S. Zhang, Electrochim. Acta 2012, 70, 344.
- 3a) R. Cao, W. Xu, D. Lv, J. Xiao, J.-G. Zhang, Adv. Energy Mater. 2015, 5, 1402273; b) F. Wu, J. T. Lee, N. Nitta, H. Kim, O. Borodin, G. Yushin, Adv. Mater. 2015, 27, 101; c) J.-S. Kim, T. H. Hwang, B. G. Kim, J. Min, J. W. Choi, Adv. Funct. Mater. 2014, 24, 5359; d) Y. Fu, Y.-S. Su, A. Manthiram, Angew. Chem., Int. Ed. 2013, 52, 6930.
- 4a) Z. Li, Y. Huang, L. Yuan, Z. Hao, Y. Huang, Carbon 2015, 92, 41; b) J.-G. Wang, K. Xie, B. Wei, Nano Energy 2015, 15, 413; c) Y.-X. Yin, S. Xin, Y.-G. Guo, L.-J. Wan, Angew. Chem., Int. Ed. 2013, 52, 13186; d) S. Xin, L. Gu, N.-H. Zhao, Y.-X. Yin, L.-J. Zhou, Y.-G. Guo, L.-J. Wan, J. Am. Chem. Soc. 2012, 134, 18510; e) S. Moon, Y. H. Jung, W. K. Jung, D. S. Jung, J. W. Choi, D. K. Kim, Adv. Mater. 2013, 25, 6547.
- 5a) Y.-S. Su, A. Manthiram, Nat. Commun. 2012, 3, 1166; b) S.-H. Chung, A. Manthiram, Chem. Commun. 2014, 50, 4184; c) R. Singhal, S.-H. Chung, A. Manthiram, V. Kalra, J. Mater. Chem. A 2015, 3, 4530; d) T.-G. Jeong, Y. H. Moon, H.-H. Chun, H. S. Kim, B. W. Choc, Y.-T. Kim, Chem. Commun. 2013, 49, 11107; e) K. Zhang, F. Qin, J. Fang, Q. Li, M. Jia, Y. Lai, Z. Zhang, J. Li, J. Solid State Electrochem. 2014, 18, 1025.
- 6a) S.-H. Chung, A. Manthiram, Adv. Funct. Mater. 2014, 24, 5299; b) S.-H. Chung, A. Manthiram, Adv. Mater. 2014, 26, 7352; c) S.-H. Chung, A. Manthiram, J. Phys. Chem. Lett. 2014, 5, 1978; d) S.-H. Chung, P. Han, R. Singhal, V. Kalra, A. Manthiram, Adv. Energy Mater. 2015, 5, 201500738; e) C.-H. Chang, S.-H. Chung, A. Manthiram, J. Mater. Chem. A 2015, 3, 18829.
- 7J. Balach, T. Jaumann, M. Klose, S. Oswald, J. Eckert, L. Giebeler, J. Phys. Chem. C 2015, 119, 4580.
- 8L. Qie, A. Manthiram, Adv. Mater. 2015, 27, 1694.
- 9G. Ma, Z. Wen, Q. Wang, C. Shen, J. Jin. X. Wu, J. Mater. Chem. A 2014, 2, 19355.
- 10H.-K. Jing, L.-L. Kong, S. Liu, G.-R. Li, X.-P. Gao, J. Mater. Chem. A 2015, 3, 12213.
- 11A. C. Kozen, C.-F. Lin, A. J. Pearse, M. A. Schroeder, X. Han, L. Hu, S.-B. Lee, G. W. Rubloff, M. Noked, ACS Nano 2015, 9, 5884.
- 12F. Wu, J. Qian, R. Chen, J. Lu, L. Li, H. Wu, J. Chen, T. Zhao, Y. Ye, K. Amine, ACS Appl. Mater. Interfaces 2014, 6, 15542.
- 13S.-H. Chung, R. Singhal, V. Kalra, A. Manthiram, J. Phys. Chem. Lett. 2015, 6, 2163.
- 14H.-L. Wu, L. A. Huff, A. A. Gewirth, ACS Appl. Mater. Interfaces 2015, 7, 1709.
- 15Y. Qu, Z. Zhang, X. Zhang, G. Ren, Y. Lai, Y. Liu, J. Li, Carbon 2015, 84, 399.
- 16J.-Q. Huang, T.-Z. Zhuang, Q. Zhang, H.-J. Peng, C.-M. Chen, F. Wei, ACS Nano 2015, 9, 3002.
- 17Z. Yuan, H.-J. Peng, J.-Q. Huang, X.-Y. Liu, D.-W. Wang, X.-B. Cheng, Q. Zhang, Adv. Funct. Mater. 2014, 24, 6105.
- 18J. Zhou, R. Li, X. Fan, Y. Chen, R. Han, W. Li, J. Zheng, B. Wang, X. Li, Energy Environ. Sci. 2014, 7, 2715.