High-Quality Monolayer Graphene Synthesis on Pd Foils via the Suppression of Multilayer Growth at Grain Boundaries
Donglin Ma
Center for Nanochemistry (CNC), Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 People's Republic of China
Search for more papers by this authorMengxi Liu
Center for Nanochemistry (CNC), Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 People's Republic of China
Search for more papers by this authorTeng Gao
Center for Nanochemistry (CNC), Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 People's Republic of China
Search for more papers by this authorCong Li
Center for Nanochemistry (CNC), Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 People's Republic of China
Search for more papers by this authorJingyu Sun
Center for Nanochemistry (CNC), Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 People's Republic of China
Search for more papers by this authorYufeng Nie
Center for Nanochemistry (CNC), Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 People's Republic of China
Search for more papers by this authorQingqing Ji
Center for Nanochemistry (CNC), Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 People's Republic of China
Search for more papers by this authorYu Zhang
Center for Nanochemistry (CNC), Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 People's Republic of China
Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871 People's Republic of China
Search for more papers by this authorXiuju Song
Center for Nanochemistry (CNC), Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 People's Republic of China
Search for more papers by this authorCorresponding Author
Yanfeng Zhang
Center for Nanochemistry (CNC), Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 People's Republic of China
Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871 People's Republic of China
E-mail: [email protected], [email protected]Search for more papers by this authorCorresponding Author
Zhongfan Liu
Center for Nanochemistry (CNC), Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 People's Republic of China
E-mail: [email protected], [email protected]Search for more papers by this authorDonglin Ma
Center for Nanochemistry (CNC), Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 People's Republic of China
Search for more papers by this authorMengxi Liu
Center for Nanochemistry (CNC), Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 People's Republic of China
Search for more papers by this authorTeng Gao
Center for Nanochemistry (CNC), Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 People's Republic of China
Search for more papers by this authorCong Li
Center for Nanochemistry (CNC), Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 People's Republic of China
Search for more papers by this authorJingyu Sun
Center for Nanochemistry (CNC), Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 People's Republic of China
Search for more papers by this authorYufeng Nie
Center for Nanochemistry (CNC), Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 People's Republic of China
Search for more papers by this authorQingqing Ji
Center for Nanochemistry (CNC), Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 People's Republic of China
Search for more papers by this authorYu Zhang
Center for Nanochemistry (CNC), Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 People's Republic of China
Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871 People's Republic of China
Search for more papers by this authorXiuju Song
Center for Nanochemistry (CNC), Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 People's Republic of China
Search for more papers by this authorCorresponding Author
Yanfeng Zhang
Center for Nanochemistry (CNC), Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 People's Republic of China
Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871 People's Republic of China
E-mail: [email protected], [email protected]Search for more papers by this authorCorresponding Author
Zhongfan Liu
Center for Nanochemistry (CNC), Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 People's Republic of China
E-mail: [email protected], [email protected]Search for more papers by this authorAbstract
The segregation of carbon from metals in which carbon is highly soluble, such as Ni (≈1.1 atom% at 1000 °C), is a typical method for graphene growth; this method differs from the surface-catalyzed growth of graphene that occurs on other metals such as Cu (<0.04 atom%). It has not been established whether strictly monolayer graphene could be synthesized through the traditional chemical vapor deposition route on metals where carbon is highly soluble, such as Pd (≈3.5 atom%). In this work, this issue is investigated by suppressing the grain boundary segregation using a pretreatment comprising the annealing of the Pd foils; this method was motivated by the fact that the typical thick growths at the grain boundaries revealed that the grain boundary functions as the main segregation channel in polycrystalline metals. To evaluate the high crystallinity of the as-grown graphene, detailed atomic-scale characterization with scanning tunneling microscopy is performed.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
smll201400421-sup-0001-S1.pdf2 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 2004, 306, 666–669.
- 2C. L. Kane, E. J. Mele, Phys. Rev. Lett. 2005, 95, 226801.
- 3K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, A. A. Firsov, Nature 2005, 438, 197–200.
- 4A. K. Geim, K. S. Novoselov, Nat. Mater. 2007, 6, 183–191.
- 5L. Zhao, R. He, K. T. Rim, T. Schiros, K. S. Kim, H. Zhou, C. Gutiérrez, S. P. Chockalingam, C. J. Arguello, L. Pálová, D. Nordlund, M. S. Hybertsen, D. R. Reichman, T. F. Heinz, P. Kim, A. Pinczuk, G. W. Flynn, A. N. Pasupathy, Science 2011, 333, 999–1003.
- 6A. K. Geim, Science 2009, 324, 1530–1534.
- 7G. Li, A. Luican, J. M. B. Lopes dos Santos, A. H. Castro Neto, A. Reina, J. Kong, E. Y. Andrei, Nat. Phys. 2010, 6, 109–113.
- 8S. Garaj, W. Hubbard, A. Reina, J. Kong, D. Branton, J. A. Golovchenko, Nature 2010, 467, 190–193.
- 9B. Hunt, J. Sanchez-Yamagishi, A. Young, M. Yankowitz, B. LeRoy, K. Watanabe, T. Taniguchi, P. Moon, M. Koshino, P. Jarillo-Herrero, Science 2013, 340, 1427–1430.
- 10C. Dean, L. Wang, P. Maher, C. Forsythe, F. Ghahari, Y. Gao, J. Katoch, M. Ishigami, P. Moon, M. Koshino, Nature 2013, 497, 598–602.
- 11W. Yan, W.-Y. He, Z.-D. Chu, M. Liu, L. Meng, R.-F. Dou, Y. Zhang, Z. Liu, J.-C. Nie, L. He, Nat. Commun. 2013, 4, 2159.
- 12A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, J. Kong, Nano Lett. 2008, 9, 30–35.
- 13Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen, S.-S. Pei, Appl. Phys. Lett. 2008, 93, 113103–3.
- 14K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, B. H. Hong, Nature 2009, 457, 706–710.
- 15X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, R. S. Ruoff, Science 2009, 324, 1312–1314.
- 16S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, S. Iijima, Nat. Nanotechnol. 2010, 5, 574–578.
- 17S. Bhaviripudi, X. Jia, M. S. Dresselhaus, J. Kong, Nano Lett. 2010, 10, 4128–4133.
- 18Z. Sun, Z. Yan, J. Yao, E. Beitler, Y. Zhu, J. M. Tour, Nature 2010, 468, 549–552.
- 19T. Gao, S. Xie, Y. Gao, M. Liu, Y. Chen, Y. Zhang, Z. Liu, ACS Nano 2011, 5, 9194–9201.
- 20Q. Yu, L. A. Jauregui, W. Wu, R. Colby, J. Tian, Z. Su, H. Cao, Z. Liu, D. Pandey, D. Wei, T. F. Chung, P. Peng, N. P. Guisinger, E. A. Stach, J. Bao, S.-S. Pei, Y. P. Chen, Nat. Mater. 2011, 10, 443–449.
- 21Z. Yan, J. Lin, Z. Peng, Z. Sun, Y. Zhu, L. Li, C. Xiang, E. L. Samuel, C. Kittrell, J. M. Tour, ACS Nano 2012, 6, 9110–9117.
- 22J. Lu, A. H. C. Neto, K. P. Loh, Nat. Commun. 2012, 3, 823.
- 23D. Geng, B. Wu, Y. Guo, L. Huang, Y. Xue, J. Chen, G. Yu, L. Jiang, W. Hu, Y. Liu, Proc. Natl. Acad. Sci. U.S.A. 2012, 109, 7992–7996.
- 24K. Yan, L. Fu, H. Peng, Z. Liu, Acc. Chem. Res. 2013, 46, 2263–2274.
- 25Y. Zhang, L. Zhang, C. Zhou, Acc. Chem. Res. 2013, 46, 2329–2339.
- 26Y. Hao, M. Bharathi, L. Wang, Y. Liu, H. Chen, S. Nie, X. Wang, H. Chou, C. Tan, B. Fallahazad, Science 2013, 342, 720–723.
- 27T. Ma, W. Ren, X. Zhang, Z. Liu, Y. Gao, L.-C. Yin, X.-L. Ma, F. Ding, H.-M. Cheng, Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 20386–20391.
- 28D. Ma, Y. Zhang, M. Liu, Q. Ji, T. Gao, Y. Zhang, Z. Liu, Nano Res. 2013, 6, 671–678.
- 29J. Lu, K. Zhang, X. Feng Liu, H. Zhang, T. Chien Sum, A. H. Castro Neto, K. P. Loh, Nat. Commun. 2013, 4. 2681.
- 30D. Geng, B. Wu, Y. Guo, B. Luo, Y. Xue, J. Chen, G. Yu, Y. Liu, J. Am. Chem. Soc. 2013, 135, 6431–6434.
- 31T. B. Massalski, Binary Alloy Phase Diagrams, 2nd ed., ASM international, The Material Information Society, Materials Park, OH 1996.
- 32A. Reina, S. Thiele, X. Jia, S. Bhaviripudi, M. S. Dresselhaus, J. A. Schaefer, J. Kong, Nano Res. 2010, 2, 509–516.
- 33N. Liu, L. Fu, B. Dai, K. Yan, X. Liu, R. Zhao, Y. Zhang, Z. Liu, Nano Lett. 2011, 11, 297–303.
- 34H. Ago, Y. Ito, N. Mizuta, K. Yoshida, B. Hu, C. M. Orofeo, M. Tsuji, K.-I. Ikeda, S. Mizuno, ACS Nano 2010, 4, 7407–7414.
- 35M. E. Ramón, A. Gupta, C. Corbet, D. A. Ferrer, H. C. P. Movva, G. Carpenter, L. Colombo, G. Bourianoff, M. Doczy, D. Akinwande, E. Tutuc, S. K. Banerjee, ACS Nano 2011, 5, 7198–7204.
- 36M. Liu, Y. Zhang, Y. Chen, Y. Gao, T. Gao, D. Ma, Q. Ji, Y. Zhang, C. Li, Z. Liu, ACS Nano 2012, 6, 10581–10589.
- 37M. Liu, Y. Gao, Y. Zhang, Y. Zhang, D. Ma, Q. Ji, T. Gao, Y. Chen, Z. Liu, Small 2013, 9, 1360–1366.
- 38Y. Gao, Y. Zhang, P. Chen, Y. Li, M. Liu, T. Gao, D. Ma, Y. Chen, Z. Cheng, X. Qiu, W. Duan, Z. Liu, Nano Lett. 2013, 13, 3439–3443.
- 39Y. Zhang, L. Gomez, F. N. Ishikawa, A. Madaria, K. Ryu, C. Wang, A. Badmaev, C. Zhou, J. Phys. Chem. Lett. 2010, 1, 3101–3107.
- 40T. Iwasaki, H. J. Park, M. Konuma, D. S. Lee, J. H. Smet, U. Starke, Nano Lett. 2011, 11, 79–84.
- 41S. Yoshii, K. Nozawa, K. Toyoda, N. Matsukawa, A. Odagawa, A. Tsujimura, Nano Lett. 2011, 11, 2628–2633.
- 42R. S. Weatherup, B. Dlubak, S. Hofmann, ACS Nano 2012, 6, 9996–10003.
- 43N. Miyaura, A. Suzuki, Chem. Rev. 1995, 95, 2457–2483.
- 44J. Tsuji, Palladium Reagents and Catalysts: Innovations in Organic Synthesis, Wiley & Sons, Chichester, UK 1995.
- 45S.-Y. Kwon, C. V. Ciobanu, V. Petrova, V. B. Shenoy, J. Bareño, V. Gambin, I. Petrov, S. Kodambaka, Nano Lett. 2009, 9, 3985–3990.
- 46Y. Murata, E. Starodub, B. B. Kappes, C. V. Ciobanu, N. C. Bartelt, K. F. McCarty, S. Kodambaka, Appl. Phys. Lett. 2010, 97, 143114.
- 47X. An, F. Liu, Y. J. Jung, S. Kar, J. Phys. Chem. C 2012, 116, 16412–16420.
- 48L. Gao, W. Ren, H. Xu, L. Jin, Z. Wang, T. Ma, L.-P. Ma, Z. Zhang, Q. Fu, L.-M. Peng, X. Bao, H.-M. Cheng, Nat. Commun. 2012, 3, 699.
- 49S. Kim, J. Nah, I. Jo, D. Shahrjerdi, L. Colombo, Z. Yao, E. Tutuc, S. K. Banerjee. Appl. Phys. Lett. 2009, 94, 062107–062103.
- 50X. Li, C. W. Magnuson, A. Venugopal, R. M. Tromp, J. B. Hannon, E. M. Vogel, L. Colombo, R. S. Ruoff. J. Am. Chem. Soc. 2011, 133, 2816–2819.
- 51E. Cockayne, G. M. Rutter, N. P. Guisinger, J. N. Crain, P. N. First, J. A. Stroscio, Phys. Rev. B 2011, 83, 195425.
- 52G. M. Rutter, J. N. Crain, N. P. Guisinger, T. Li, P. N. First, J. A. Stroscio, Science 2007, 317, 219–222.
- 53H. Yan, C.-C. Liu, K.-K. Bai, X. Wang, M. Liu, W. Yan, L. Meng, Y. Zhang, Z. Liu, R.-F. Dou, Appl. Phys. Lett. 2013, 103, 143120.
- 54Y. Zhang, T. Gao, Y. Gao, S. Xie, Q. Ji, K. Yan, H. Peng, Z. Liu, ACS Nano 2011, 5, 4014–4022.
- 55H. Yokoyama, H. Numakura, M. Koiwa, Acta Mater. 1998, 46, 2823–2830.