Facile Synthesis and Size Control of II–VI Nanowires Using Bismuth Salts†
James Puthussery
Department of Chemistry and Biochemistry University of Notre Dame Notre Dame, IN 46556 (USA)
Search for more papers by this authorThomas H. Kosel
Department of Electrical Engineering University of Notre Dame Notre Dame, IN 46556 (USA)
Search for more papers by this authorCorresponding Author
Masaru Kuno
Department of Chemistry and Biochemistry University of Notre Dame Notre Dame, IN 46556 (USA)
Department of Chemistry and Biochemistry University of Notre Dame Notre Dame, IN 46556 (USA).Search for more papers by this authorJames Puthussery
Department of Chemistry and Biochemistry University of Notre Dame Notre Dame, IN 46556 (USA)
Search for more papers by this authorThomas H. Kosel
Department of Electrical Engineering University of Notre Dame Notre Dame, IN 46556 (USA)
Search for more papers by this authorCorresponding Author
Masaru Kuno
Department of Chemistry and Biochemistry University of Notre Dame Notre Dame, IN 46556 (USA)
Department of Chemistry and Biochemistry University of Notre Dame Notre Dame, IN 46556 (USA).Search for more papers by this authorM. K. thanks the NSF NIRT (ECS-0609249) and CAREER (CHE-0547784) programs for funding. We thank the University of Notre Dame and the Notre Dame Radiation Laboratory/DOE Office of Basic Energy Sciences for financial support and for use of their facilities. We also thank Simon Lee and Yanghai Yu for assistance in the elemental analysis of the nanowires. M. K. is a Cottrell Scholar of Research Corporation.
Graphical Abstract
High-aspect-ratio II–VI semiconductor nanowires (NWs; see image) are prepared using solution–liquid–solid growth employing simple Bi salts. NW size control is achieved by varying the Bi content of the preparation, leading to wire diameters between 5 and 11 nm. Corresponding size-dependent trends are seen in the linear absorption/band-edge emission of the wires, suggesting carrier confinement.
Supporting Information
Detailed facts of importance to specialist readers are published as ”Supporting Information”. Such documents are peer-reviewed, but not copy-edited or typeset. They are made available as submitted by the authors.
Filename | Description |
---|---|
smll_200801838_sm_suppdata.pdf3.2 MB | suppdata |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 X. Zhou, S. A. Dayeh, D. Aplin, D. Wang, E. T. Yu, Appl. Phys. Lett. 2006, 89, 053113(1)–053113(3).
- 2 E. A. Muljarov, E. A. Zhukov, V. S. Dneprovskii, Y. Masumoto, Phys. Rev. B 2000, 62, 7420–7432.
- 3 F. Vouilloz, D. Y. Oberli, M. A. Dupertuis, A. Gustafsson, F. Reinhardt, E. Kapon, Phys. Rev. Lett. 1997, 78, 1580–1583.
- 4 J. Wang, M. S. Gudiksen, X. Duan, Y. Cui, C. M. Lieber, Science 2001, 293, 1455–1457.
- 5 M. Law, L. E. Greene, J. C. Johnson, R. Saykally, P. Yang, Nat. Mater. 2005, 4, 455–459.
- 6 M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Science 2001, 292, 1897–1899.
- 7 Y. Cui, Q. Wei, H. Park, C. M. Lieber, Science 2001, 293, 1289–1292.
- 8 J. Xiang, W. Lu, Y. Hu, Y. Wu, H. Yan, C. M. Lieber, Nature 2006, 441, 489–493.
- 9 G. Che, B. B. Lakshmi, C. R. Martin, E. R. Fisher, R. S. Ruoff, Chem. Mater. 1998, 10, 260–267.
- 10 N. Pradhan, H. Xu, X. Peng, Nano Lett. 2006, 6, 720–724.
- 11 N. Pradhan, S. Efrima, J. Phys. Chem. B 2004, 108, 11964–11970.
- 12 K. S. Cho, D. V. Talapin, W. Gaschler, C. B. Murray, J. Am. Chem. Soc. 2005, 127, 7140–7147.
- 13 Z. Tang, N. A. Kotov, M. Giersig, Science 2002, 297, 237–240.
- 14 R. S. Wagner, W. C. Ellis, Appl. Phys. Lett. 1964, 4, 89–90.
- 15 M. Yazawa, M. Koguchi, K. Hiruma, Appl. Phys. Lett. 1991, 58, 1080–1082.
- 16 T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons, W. E. Buhro, Science 1995, 270, 1791–1794.
- 17 J. W. Grebinski, K. L. Hull, J. Zhang, T. H. Kosel, M. Kuno, Chem. Mater. 2004, 16, 5260–5272.
- 18 J. D. Holmes, K. P. Johnston, R. C. Doty, B. A. Korgel, Science 2000, 287, 1471–1473.
- 19 A. M. Morales, C. M. Lieber, Science 1998, 279, 208–211.
- 20 H. Yu, J. Li, R. A. Loomis, P. C. Gibbons, L. W. Wang, W. E. Buhro, J. Am. Chem. Soc. 2003, 125, 16168–16169.
- 21 M. Kuno, O. Ahmad, V. Protasenko, D. Bacinello, T. H. Kosel, Chem. Mater. 2006, 18, 5722–5732.
- 22 J. Puthussery, A. Lan, T. H. Kosel, M. Kuno, ACS Nano 2008, 2, 357–367.
- 23 J. Sun, L.-W. Wang, W. E. Buhro, J. Am. Chem. Soc. 2008, 130, 7997–8005.
- 24 D. D. Fanfair, B. A. Korgel, Cryst. Growth Des. 2005, 5, 1971–1976.
- 25 Z. Li, A. Kornowski, A. Myalitsin, A. Mews, Small 2008, 4, 1698–1702.
- 26 C. Burda, X. Chen, R. Narayanan, M. A. El-Sayed, Chem. Rev. 2005, 105, 1025–1102.
- 27 Y. Yin, A. P. Alivisatos, Nature 2005, 437, 664–670.
- 28 D. J. Milliron, S. M. Hughes, Y. Cui, L. Manna, J. Li, L.-W. Wang, A. Paul Alivisatos, Nature 2004, 430, 190–195.
- 29 F. Wang, R. Tang, H. Yu, P. C. Gibbons, W. E. Buhro, Chem. Mater. 2008, 20, 3656–3662.
- 30 J. W. Grebinski, K. L. Richter, J. Zhang, T. H. Kosel, M. Kuno, J. Phys. Chem. B 2004, 108, 9745–9751.
- 31 S.-H. Wei, S. B. Zhang, Phys. Rev. B 2000, 62, 6944–6947.
- 32 F. M. Davidson, D. C. Lee, D. D. Fanfair, B. A. Korgel, J. Phys. Chem. C 2007, 111, 2929–2935.
- 33 C. B. Murray, D. J. Norris, M. G. Bawendi, J. Am. Chem. Soc. 1993, 115, 8706–8715.
- 34 L. Qu, Z. A. Peng, X. Peng, Nano Lett. 2001, 1, 333–337.
- 35 V. V. Protasenko, K. L. Hull, M. Kuno, Adv. Mater. 2005, 17, 2942–2949.
- 36 E. E. Foos, R. M. Stroud, A. D. Berry, A. W. Snow, J. P. Armistead, J. Am. Chem. Soc. 2000, 122, 7114–7115.
- 37 Y. Wang, Y. Xia, Nano Lett. 2004, 4, 2047–2050.
- 38 F. Wang, A. Dong, J. Sun, R. Tang, H. Yu, W. E. Buhro, Inorg. Chem. 2006, 45, 7511–7521.