Surface Modification of Electrospun Polycaprolactone Nanofiber Meshes by Plasma Treatment to Enhance Biological Performance
Albino Martins
3B's Research Group – Biomaterials, Biodegradables and Biomimetics Department of Polymer Engineering, University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark, Zona Industrial da Gandra, S. Cláudio do Barco, 4806-909 Caldas das Taipas, Guimarães (Portugal)
IBB – Institute for Biotechnology and Bioengineering PT Government Associated Laboratory, Braga (Portugal)
Search for more papers by this authorElisabete D. Pinho
3B's Research Group – Biomaterials, Biodegradables and Biomimetics Department of Polymer Engineering, University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark, Zona Industrial da Gandra, S. Cláudio do Barco, 4806-909 Caldas das Taipas, Guimarães (Portugal)
IBB – Institute for Biotechnology and Bioengineering PT Government Associated Laboratory, Braga (Portugal)
Search for more papers by this authorSusana Faria
Research Centre Officina Mathematica, Department of Mathematics for Science and Technology, University of Minho Campus de Azurém, 4800-058 Guimarães (Portugal)
Search for more papers by this authorIva Pashkuleva
3B's Research Group – Biomaterials, Biodegradables and Biomimetics Department of Polymer Engineering, University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark, Zona Industrial da Gandra, S. Cláudio do Barco, 4806-909 Caldas das Taipas, Guimarães (Portugal)
IBB – Institute for Biotechnology and Bioengineering PT Government Associated Laboratory, Braga (Portugal)
Search for more papers by this authorAlexandra P. Marques
3B's Research Group – Biomaterials, Biodegradables and Biomimetics Department of Polymer Engineering, University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark, Zona Industrial da Gandra, S. Cláudio do Barco, 4806-909 Caldas das Taipas, Guimarães (Portugal)
IBB – Institute for Biotechnology and Bioengineering PT Government Associated Laboratory, Braga (Portugal)
Search for more papers by this authorRui L. Reis
3B's Research Group – Biomaterials, Biodegradables and Biomimetics Department of Polymer Engineering, University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark, Zona Industrial da Gandra, S. Cláudio do Barco, 4806-909 Caldas das Taipas, Guimarães (Portugal)
IBB – Institute for Biotechnology and Bioengineering PT Government Associated Laboratory, Braga (Portugal)
Search for more papers by this authorCorresponding Author
Nuno M. Neves
3B's Research Group – Biomaterials, Biodegradables and Biomimetics Department of Polymer Engineering, University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark, Zona Industrial da Gandra, S. Cláudio do Barco, 4806-909 Caldas das Taipas, Guimarães (Portugal)
IBB – Institute for Biotechnology and Bioengineering PT Government Associated Laboratory, Braga (Portugal)
3B's Research Group – Biomaterials, Biodegradables and Biomimetics Department of Polymer Engineering, University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark, Zona Industrial da Gandra, S. Cláudio do Barco, 4806-909 Caldas das Taipas, Guimarães (Portugal).Search for more papers by this authorAlbino Martins
3B's Research Group – Biomaterials, Biodegradables and Biomimetics Department of Polymer Engineering, University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark, Zona Industrial da Gandra, S. Cláudio do Barco, 4806-909 Caldas das Taipas, Guimarães (Portugal)
IBB – Institute for Biotechnology and Bioengineering PT Government Associated Laboratory, Braga (Portugal)
Search for more papers by this authorElisabete D. Pinho
3B's Research Group – Biomaterials, Biodegradables and Biomimetics Department of Polymer Engineering, University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark, Zona Industrial da Gandra, S. Cláudio do Barco, 4806-909 Caldas das Taipas, Guimarães (Portugal)
IBB – Institute for Biotechnology and Bioengineering PT Government Associated Laboratory, Braga (Portugal)
Search for more papers by this authorSusana Faria
Research Centre Officina Mathematica, Department of Mathematics for Science and Technology, University of Minho Campus de Azurém, 4800-058 Guimarães (Portugal)
Search for more papers by this authorIva Pashkuleva
3B's Research Group – Biomaterials, Biodegradables and Biomimetics Department of Polymer Engineering, University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark, Zona Industrial da Gandra, S. Cláudio do Barco, 4806-909 Caldas das Taipas, Guimarães (Portugal)
IBB – Institute for Biotechnology and Bioengineering PT Government Associated Laboratory, Braga (Portugal)
Search for more papers by this authorAlexandra P. Marques
3B's Research Group – Biomaterials, Biodegradables and Biomimetics Department of Polymer Engineering, University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark, Zona Industrial da Gandra, S. Cláudio do Barco, 4806-909 Caldas das Taipas, Guimarães (Portugal)
IBB – Institute for Biotechnology and Bioengineering PT Government Associated Laboratory, Braga (Portugal)
Search for more papers by this authorRui L. Reis
3B's Research Group – Biomaterials, Biodegradables and Biomimetics Department of Polymer Engineering, University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark, Zona Industrial da Gandra, S. Cláudio do Barco, 4806-909 Caldas das Taipas, Guimarães (Portugal)
IBB – Institute for Biotechnology and Bioengineering PT Government Associated Laboratory, Braga (Portugal)
Search for more papers by this authorCorresponding Author
Nuno M. Neves
3B's Research Group – Biomaterials, Biodegradables and Biomimetics Department of Polymer Engineering, University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark, Zona Industrial da Gandra, S. Cláudio do Barco, 4806-909 Caldas das Taipas, Guimarães (Portugal)
IBB – Institute for Biotechnology and Bioengineering PT Government Associated Laboratory, Braga (Portugal)
3B's Research Group – Biomaterials, Biodegradables and Biomimetics Department of Polymer Engineering, University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark, Zona Industrial da Gandra, S. Cláudio do Barco, 4806-909 Caldas das Taipas, Guimarães (Portugal).Search for more papers by this authorAbstract
A critical aspect in the development of biomaterials is the optimization of their surface properties to achieve an adequate cell response. In the present work, electrospun polycaprolactone nanofiber meshes (NFMs) are treated by radio-frequency (RF) plasma using different gases (Ar or O2), power (20 or 30 W), and exposure time (5 or 10 min). Morphological and roughness analysis show topographical changes on the plasma-treated NFMs. X-ray photoelectron spectroscopy (XPS) results indicate an increment of the oxygen-containing groups, mainly OH and CO, at the plasma-treated surfaces. Accordingly, the glycerol contact angle results demonstrate a decrease in the hydrophobicity of plasma-treated meshes, particularly in the O2-treated ones. Three model cell lines (fibroblasts, chondrocytes, and osteoblasts) are used to study the effect of plasma treatments over the morphology, cell adhesion, and proliferation. A plasma treatment with O2 and one with Ar are found to be the most successful for all the studied cell types. The influence of hydrophilicity and roughness of those NFMs on their biological performance is discussed. Despite the often claimed morphological similarity of NFMs to natural extracellular matrixes, their surface properties contribute substantially to the cellular performance and therefore those should be optimized.
References
- 1 J. A. Hubbell, Nat. Biotechnol. 1995, 13, 565.
- 2 J. F. Mano, G. A. Silva, H. S. Azevedo, P. B. Malafaya, R. A. Sousa, S. S. Silva, L. F. Boesel, J. M. Oliveira, T. C. Santos, A. P. Marques, N. M. Neves, R. L. Reis, J. R. Soc. Interface 2007, 4, 999.
- 3 C. M. Agrawal, R. B. Ray, J. Biomed. Mater. Res. 2001, 55, 141.
- 4 C. G. Pitt, M. M. Gratzl, G. L. Kimmel, J. Surles, A. Schindler, Biomaterials 1981, 2, 215.
- 5 H. Tsuji, Y. Ikada, J. Appl. Polym. Sci. 1998, 67, 405.
- 6 a) G. Ciapetti, L. Ambrosio, L. Savarino, D. Granchi, E. Cenni, N. Baldini, S. Pagani, S. Guizzardi, F. Causa, A. Giunti, Biomaterials 2003, 24, 3815; b) D. W. Hutmacher, K. W. Ng, C. Kaps, M. Sittinger, S. Klaring, Biomaterials 2003, 24, 4445; c) X. X. Shao, D. W. Hutmacher, S. T. Ho, J. C. Goh, E. H. Lee, Biomaterials 2006, 27, 1071.
- 7 H. Tsuji, Y. Ikada, J. Appl. Polym. Sci. 1996, 60, 2367.
- 8 a) R. Dersch, M. Steinhart, U. Boudriot, A. Greiner, J. H. Wendorff, Polym. Adv. Technol. 2005, 16, 276; b) Z. M. Huang, Y. Z. Zhang, M. Kotaki, S. Ramakrishna, Compos. Sci. Technol. 2003, 63, 2223.
- 9 A. Martins, J. V. Araujo, R. L. Reis, N. M. Neves, Nanomedicine 2007, 2, 929.
- 10 J. Zeng, X. Chen, X. Xu, Q. Liang, X. Bian, L. Yang, X. Jing, J. Appl. Polym. Sci. 2003, 89, 1085.
- 11 D. H. Reneker, I. Chun, Nanotechnology 1996, 7, 216.
- 12 a) Z. Ma, M. Kotaki, R. Inai, S. Ramakrishna, Tissue Eng. 2005, 11, 101; b) L. A. Smith, P. X. Ma, Colloids Surf. B 2004, 39, 125.
- 13 a) K. Fujihara, M. Kotaki, S. Ramakrishna, Biomaterials 2005, 26, 4139; b) W. J. Li, K. G. Danielson, P. G. Alexander, R. S. Tuan, J. Biomed. Mater. Res. A 2003, 67, 1105; c) W. J. Li, R. Tuli, X. Huang, P. Laquerriere, R. S. Tuan, Biomaterials 2005, 26, 5158; d) B. M. Min, G. Lee, S. H. Kim, Y. S. Nam, T. S. Lee, W. H. Park, Biomaterials 2004, 25, 1289; e) C. Xu, R. Inai, M. Kotaki, S. Ramakrishna, Tissue Eng. 2004, 10, 1160; f) F. Yang, C. Y. Xu, M. Kotaki, S. Wang, S. Ramakrishna, J. Biomater. Sci. 2004, 15, 1483.
- 14 K. Tuzlakoglu, N. Bolgen, A. J. Salgado, M. E. Gomes, E. Piskin, R. L. Reis, J. Mater. Sci. Mater. Med. 2005, 16, 1099.
- 15 C. M. Chan, T. M. Ko, H. Hiraoka, Surf. Sci. Rep. 1996, 24, 1.
- 16 S. Wang, W. Cui, J. Bei, Anal. Bioanal. Chem. 2005, 381, 547.
- 17 P. K. Chu, J. Y. Chen, L. P. Wang, N. Huang, Mater. Sci. Eng. Rep. 2002, 36, 143.
- 18 a) M. Ibnabddjalil, I. H. Loh, C. C. Chu, N. Blumenthal, H. Alexander, D. Turner, J. Biomed. Mater. Res. 1994, 28, 289; b) I. H. Loh, H. L. Lin, C. C. Chu, J. Appl. Biomater. 1992, 3, 131.
- 19 N. Y. Cui, N. M. D. Brown, Appl. Surf. Sci. 2002, 189, 31.
- 20 J. Lai, B. Sunderland, J. Xue, S. Yan, W. Zhao, M. Folkard, B. D. Michael, Y. Wang, Appl. Surf. Sci. 2006, 252, 3375.
- 21 E. M. Liston, L. Martinu, M. R. Wertheimer, J. Adhes. Sci. Technol. 1993, 7, 1091.
- 22 D. Briem, S. Strametz, K. Schroder, N. M. Meenen, W. Lehmann, W. Linhart, A. Ohl, J. M. Rueger, J. Mater. Sci. Mater. Med. 2005, 16, 671.
- 23 R. G. Flemming, C. J. Murphy, G. A. Abrams, S. L. Goodman, P. F. Nealey, Biomaterials 1999, 20, 573.
- 24 A. Holländer, Surf. Coat. Technol. 2005, 200, 561.
- 25 S. C. Baker, N. Atkin, P. A. Gunning, N. Granville, K. Wilson, D. Wilson, J. Southgate, Biomaterials 2006, 27, 3136.
- 26 Z. Gugala, S. Gogolewski, J. Biomed. Mater. Res. A 2006, 76, 288.
- 27 K. Park, Y. M. Ju, J. S. Son, K. D. Ahn, D. K. Han, J. Biomater. Sci. 2007, 18, 369.
- 28 Y. Wan, X. Qu, J. Lu, C. Zhu, L. Wan, J. Yang, J. Bei, S. Wang, Biomaterials 2004, 25, 4777.
- 29 J. Yang, J. Bei, S. Wang, Biomaterials 2002, 23, 2607.
- 30 Q. F. Wei, W. D. Gao, D. Y. Hou, X. Q. Wang, Appl. Surf. Sci. 2005, 245, 16.
- 31 L. Lianos, C. Quet, T. M. Duc, Surf. Interface Anal. 1994, 21, 14.
- 32 T. Groth, G. Altankov, Biomaterials 1996, 17, 1227.
- 33
K. Webb,
V. Hlady,
P. A. Tresco,
J. Biomed. Mater. Res.
1998,
41,
422.
10.1002/(SICI)1097-4636(19980905)41:3<422::AID-JBM12>3.0.CO;2-K CAS PubMed Web of Science® Google Scholar
- 34 J. H. Lee, G. Khang, J. W. Lee, H. B. Lee, J. Colloid Interface Sci. 1998, 205, 323.
- 35 S. Haiber, X. Ai, H. Bubert, M. Heintze, V. Bruser, W. Brandl, G. Marginean, Anal. Bioanal. Chem. 2003, 375, 875.
- 36 E. A. Vogler, R. W. Bussian, J. Biomed. Mater. Res. 1987, 21, 1197.
- 37 J. H. Lee, H. B. Lee, J. Biomater. Sci. 1993, 4, 467.
- 38 A. S. Curtis, J. V. Forrester, C. McInnes, F. Lawrie, J. Cell Biol. 1983, 97, 1500.
- 39 a) I. Degasne, M. F. Basle, V. Demais, G. Hure, M. Lesourd, B. Grolleau, L. Mercier, D. Chappard, Calcif. Tissue Int. 1999, 64, 499; b) K. Hatano, H. Inoue, T. Kojo, T. Matsunaga, T. Tsujisawa, C. Uchiyama, Y. Uchida, Bone 1999, 25, 439; c) J. Lincks, B. D. Boyan, C. R. Blanchard, C. H. Lohmann, Y. Liu, D. L. Cochran, D. D. Dean, Z. Schwartz, Biomaterials 1998, 19, 2219; d) O. Zinger, G. Zhao, Z. Schwartz, J. Simpson, M. Wieland, D. Landolt, B. Boyan, Biomaterials 2005, 26, 1837.
- 40 T. P. Kunzler, T. Drobek, M. Schuler, N. D. Spencer, Biomaterials 2007, 28, 2175.
- 41
a)
K. Anselme,
M. Bigerelle,
B. Noel,
E. Dufresne,
D. Judas,
A. Iost,
P. Hardouin,
J. Biomed Mater. Res.
2000,
49,
155;
10.1002/(SICI)1097-4636(200002)49:2<155::AID-JBM2>3.0.CO;2-J CAS PubMed Web of Science® Google Scholarb) K. Anselme, P. Linez, M. Bigerelle, D. Le Maguer, A. Le Maguer, P. Hardouin, H. F. Hildebrand, A. Iost, J. M. Leroy, Biomaterials 2000, 21, 1567; c) B. D. Boyan, J. Lincks, C. H. Lohmann, V. L. Sylvia, D. L. Cochran, C. R. Blanchard, D. D. Dean, Z. Schwartz, J. Orthop. Res. 1999, 17, 446; d) J. Y. Martin, Z. Schwartz, T. W. Hummert, D. M. Schraub, J. Simpson, J. Lankford, Jr, D. D. Dean, D. L. Cochran, B. D. Boyan, J. Biomed. Mater. Res. 1995, 29, 389; e) Z. Schwartz, J. Y. Martin, D. D. Dean, J. Simpson, D. L. Cochran, B. D. Boyan, J. Biomed. Mater. Res. 1996, 30, 145.10.1002/(SICI)1097-4636(199602)30:2<145::AID-JBM3>3.0.CO;2-R CAS PubMed Web of Science® Google Scholar
- 42 K. Anselme, M. Bigerelle, J. Mater. Sci. Mater. Med. 2006, 17, 471.
- 43 a) B. Grossner-Schreiber, M. Herzog, J. Hedderich, A. Duck, M. Hannig, M. Griepentrog, Clin. Oral Implants Res. 2006, 17, 736; b) M. Kononen, M. Hormia, J. Kivilahti, J. Hautaniemi, I. Thesleff, J. Biomed. Mater. Res. 1992, 26, 1325.