Cell Docking in Double Grooves in a Microfluidic Channel†
Masoud Khabiry
Center for Biomedical Engineering Department of Medicine, Brigham and Women's Hospital Harvard Medical School Boston, MA 02115 8 (USA)
Harvard-MIT Division of Health Sciences and Technology Massachusetts Institute of Technology Cambridge, MA 02139 (USA)
Search for more papers by this authorBong Geun Chung
Center for Biomedical Engineering Department of Medicine, Brigham and Women's Hospital Harvard Medical School Boston, MA 02115 8 (USA)
Harvard-MIT Division of Health Sciences and Technology Massachusetts Institute of Technology Cambridge, MA 02139 (USA)
Search for more papers by this authorMatthew J. Hancock
Center for Biomedical Engineering Department of Medicine, Brigham and Women's Hospital Harvard Medical School Boston, MA 02115 8 (USA)
Harvard-MIT Division of Health Sciences and Technology Massachusetts Institute of Technology Cambridge, MA 02139 (USA)
Search for more papers by this authorHarish Chandra Soundararajan
Center for Biomedical Engineering Department of Medicine, Brigham and Women's Hospital Harvard Medical School Boston, MA 02115 8 (USA)
Harvard-MIT Division of Health Sciences and Technology Massachusetts Institute of Technology Cambridge, MA 02139 (USA)
Search for more papers by this authorYanan Du
Center for Biomedical Engineering Department of Medicine, Brigham and Women's Hospital Harvard Medical School Boston, MA 02115 8 (USA)
Harvard-MIT Division of Health Sciences and Technology Massachusetts Institute of Technology Cambridge, MA 02139 (USA)
Search for more papers by this authorDonald Cropek
U.S. Army Corps of Engineers Construction Engineering Research Laboratory Champaign, IL 61822 (USA)
Search for more papers by this authorWon Gu Lee
Center for Biomedical Engineering Department of Medicine, Brigham and Women's Hospital Harvard Medical School Boston, MA 02115 8 (USA)
Harvard-MIT Division of Health Sciences and Technology Massachusetts Institute of Technology Cambridge, MA 02139 (USA)
Search for more papers by this authorCorresponding Author
Ali Khademhosseini
Center for Biomedical Engineering Department of Medicine, Brigham and Women's Hospital Harvard Medical School Boston, MA 02115 8 (USA)
Harvard-MIT Division of Health Sciences and Technology Massachusetts Institute of Technology Cambridge, MA 02139 (USA)
Center for Biomedical Engineering Department of Medicine, Brigham and Women's Hospital Harvard Medical School Boston, MA 02115 8 (USA).Search for more papers by this authorMasoud Khabiry
Center for Biomedical Engineering Department of Medicine, Brigham and Women's Hospital Harvard Medical School Boston, MA 02115 8 (USA)
Harvard-MIT Division of Health Sciences and Technology Massachusetts Institute of Technology Cambridge, MA 02139 (USA)
Search for more papers by this authorBong Geun Chung
Center for Biomedical Engineering Department of Medicine, Brigham and Women's Hospital Harvard Medical School Boston, MA 02115 8 (USA)
Harvard-MIT Division of Health Sciences and Technology Massachusetts Institute of Technology Cambridge, MA 02139 (USA)
Search for more papers by this authorMatthew J. Hancock
Center for Biomedical Engineering Department of Medicine, Brigham and Women's Hospital Harvard Medical School Boston, MA 02115 8 (USA)
Harvard-MIT Division of Health Sciences and Technology Massachusetts Institute of Technology Cambridge, MA 02139 (USA)
Search for more papers by this authorHarish Chandra Soundararajan
Center for Biomedical Engineering Department of Medicine, Brigham and Women's Hospital Harvard Medical School Boston, MA 02115 8 (USA)
Harvard-MIT Division of Health Sciences and Technology Massachusetts Institute of Technology Cambridge, MA 02139 (USA)
Search for more papers by this authorYanan Du
Center for Biomedical Engineering Department of Medicine, Brigham and Women's Hospital Harvard Medical School Boston, MA 02115 8 (USA)
Harvard-MIT Division of Health Sciences and Technology Massachusetts Institute of Technology Cambridge, MA 02139 (USA)
Search for more papers by this authorDonald Cropek
U.S. Army Corps of Engineers Construction Engineering Research Laboratory Champaign, IL 61822 (USA)
Search for more papers by this authorWon Gu Lee
Center for Biomedical Engineering Department of Medicine, Brigham and Women's Hospital Harvard Medical School Boston, MA 02115 8 (USA)
Harvard-MIT Division of Health Sciences and Technology Massachusetts Institute of Technology Cambridge, MA 02139 (USA)
Search for more papers by this authorCorresponding Author
Ali Khademhosseini
Center for Biomedical Engineering Department of Medicine, Brigham and Women's Hospital Harvard Medical School Boston, MA 02115 8 (USA)
Harvard-MIT Division of Health Sciences and Technology Massachusetts Institute of Technology Cambridge, MA 02139 (USA)
Center for Biomedical Engineering Department of Medicine, Brigham and Women's Hospital Harvard Medical School Boston, MA 02115 8 (USA).Search for more papers by this authorThis paper was partly supported by the National Institutes of Health (NIH), US Army Corps of Engineers, and the Charles Stark Draper Laboratory. M.K., B.G.C., and M.J.H. contributed equally to this work.
Abstract
Microstructures that generate shear-protected regions in microchannels can rapidly immobilize cells for cell-based biosensing and drug screening. Here, a two-step fabrication method is used to generate double microgrooves with various depth ratios to achieve controlled double-level cell patterning while still providing shear protection. Six microgroove geometries are fabricated with different groove widths and depth ratios. Two modes of cell docking are observed: cells docked upstream in sufficiently deep and narrow grooves, and downstream in shallow, wide grooves. Computational flow simulations link the groove geometry and bottom shear stress to the experimental cell docking patterns. Analysis of the experimental cell retention in the double grooves demonstrates its linear dependence on inlet flow speed, with slope inversely proportional to the sheltering provided by the groove geometry. Thus, double-grooved microstructures in microfluidic channels provide shear-protected regions for cell docking and immobilization and appear promising for cell-based biosensing and drug discovery.
References
- 1 A. Khademhosseini, R. Langer, J. Borenstein, J. P. Vacanti, Proc. Natl. Acad. Sci. USA. 2006, 103, 2480–2487.
- 2 K. R. King, C. C. J. Wang, M. R. Kaazempur-Mofrad, J. P. Vacanti, J. T. Borenstein, Adv. Mater. 2004, 16, 2007–2012.
- 3 G. M. Whitesides, Nature 2006, 442, 368–373.
- 4 D. B. Weibel, G. M. Whitesides, Curr. Opin. Chem. Biol. 2006, 10, 584–591.
- 5 D. J. Beebe, G. A. Mensing, G. M. Walker, Annu. Rev. Biomed. Eng. 2002, 4, 261–286.
- 6 J. Melin, S. R. Quake, Annu. Rev. Biophys. Biomol. Struct. 2007, 36, 213–231.
- 7 S. Takayama, E. Ostuni, P. LeDuc, K. Naruse, D. E. Ingber, G. M. Whitesides, Nature 2001, 411, 1016.
- 8 A. Tourovskaia, X. Figueroa-Masot, A. Folch, Lab Chip 2005, 5, 14–19.
- 9 A. Khademhosseini, J. Yeh, G. Eng, J. Karp, H. Kaji, J. Borenstein, O. C. Farokhzad, R. Langer, Lab Chip 2005, 5, 1380–1386.
- 10 A. Khademhosseini, J. Yeh, S. Jon, G. Eng, K. Y. Suh, J. A. Burdick, R. Langer, Lab Chip 2004, 4, 425–430.
- 11 J. Park, F. Berthiaume, M. Toner, M. L. Yarmush, A. W. Tilles, Biotechnol. Bioeng. 2005, 90, 632–644.
- 12 P. J. Lee, P. J. Hung, L. P. Lee, Biotechnol. Bioeng. 2007, 97, 1340–1346.
- 13 W. G. Koh, L. J. Itle, M. V. Pishko, Anal. Chem. 2003, 75, 5783–5789.
- 14 A. Khademhosseini, K. Y. Suh, S. Jon, G. Eng, J. Yeh, G. J. Chen, R. Langer, Anal. Chem. 2004, 76, 3675–3681.
- 15 D. Di Carlo, N. Aghdam, L. P. Lee, Anal. Chem. 2006, 78, 4925–4930.
- 16 A. Manbachi, S. Shrivastava, M. Cioffi, B. G. Chung, M. Moretti, U. Demirci, M. Yliperttula, A. Khademhosseini, Lab Chip 2008, 8, 747–754.
- 17 S. V. Patankar, Numerical heat transfer and fluid flow, Hemisphere, New York 1980.
- 18
J. H. Ferziger,
M. Peric,
Computational methods for fluid dynamics,
Springer,
New York
2002.
10.1007/978-3-642-56026-2 Google Scholar
- 19
T. J. Chung,
Computational Fluid Dynamics,
Cambridge University Press,
2002.
10.1017/CBO9780511606205 Google Scholar
- 20 D. A. Boy, F. Gibou, S. Pennathur, Lab Chip 2008, 8, 1424–1431.
- 21 P. N. Shankar, M. D. Deshpande, Annu. Rev. Fluid Mech. 2000, 32, 93–136.
- 22 S. Taneda, J. Phys. Soc. Japan 1979, 46, 1935–1942.
- 23 J. J. L. Higdon, J. Fluid Mech. 2006, 159, 195–226.
- 24 H. Singh, E. S. Ang, T. T. Lim, D. W. Hutmacher, Biotechnol. Bioeng. 2007, 97, 1291–1299.
- 25 G. K. Bachelor, An introduction to fluid dynamics, The University Press, Cambridge 1967, pp. 126, 153, 217.
- 26
C. Pozrikidis,
Boundary Integral and Singularity Methods for Linearized Viscous Flow,
Cambridge University Press,
1992, pp.
1.
10.1017/CBO9780511624124.002 Google Scholar
- 27 F. M. White, Viscous Fluid Flow, Mcgraw–Hill, Boston 1991, pp. 114 (Equation 3–28).
- 28 D. J. Acheson, Elementary Fluid Dynamics, Oxford University Press, 1990, pp. 229.
- 29 D. P. Gaver, 3rd, S. M. Kute, Biophys. J. 1998, 75, 721–733.
- 30 H. Lu, L. Y. Koo, W. M. Wang, D. A. Lauffenburger, L. G. Griffith, K. F. Jensen, Anal. Chem. 2004, 76, 5257–5264.
- 31 J. A. Prins, J. Mulder, J. Schenk, Appl. Sci. Res. 1951, 2, 431–438.
- 32 J. R. Sellars, M. Tribus, J. S. Klein, Trans. ASME 1956, 78, 441–448.
- 33 C. Pozrikidis, J. Fluid Mech. 2006, 180, 515–527.
- 34 U. Ghia, K. N. Ghia, C. T. Shin, J. Comput. Phys. 1982, 48, 387–411.
- 35 E. Erturk, T. C. Corke, C. Gokcol, Int. J. Numer. Meth. Fl. 2005, 48, 747–774.