Efficient On-Demand Compound Droplet Formation: From Microfluidics to Microdroplets as Miniaturized Laboratories
Wei Wang
School of Chemical and Biomedical & Center for Advanced Bionanosystems Nanyang Technological University 637 457 (Singapore)
Search for more papers by this authorChun Yang
School of Mechanical and Aerospace Engineering Nanyang Technological University 637 457 (Singapore)
Search for more papers by this authorCorresponding Author
Chang Ming Li
School of Chemical and Biomedical & Center for Advanced Bionanosystems Nanyang Technological University 637 457 (Singapore)
School of Chemical and Biomedical & Center for Advanced Bionanosystems Nanyang Technological University 637 457 (Singapore).Search for more papers by this authorWei Wang
School of Chemical and Biomedical & Center for Advanced Bionanosystems Nanyang Technological University 637 457 (Singapore)
Search for more papers by this authorChun Yang
School of Mechanical and Aerospace Engineering Nanyang Technological University 637 457 (Singapore)
Search for more papers by this authorCorresponding Author
Chang Ming Li
School of Chemical and Biomedical & Center for Advanced Bionanosystems Nanyang Technological University 637 457 (Singapore)
School of Chemical and Biomedical & Center for Advanced Bionanosystems Nanyang Technological University 637 457 (Singapore).Search for more papers by this authorGraphical Abstract
Microdroplets are naturally well-defined reactors for performing reactions on the microscale. An innovative technique is presented to achieve one-step compound droplet formation in a microfluidic-channel structure. The image shows a droplet in the formation process and a droplet flowing downstream of the channel with mixing/reaction occurring inside it. Red and green colors denote different regents.
Supporting Information
Detailed facts of importance to specialist readers are published as ”Supporting Information”. Such documents are peer-reviewed, but not copy-edited or typeset. They are made available as submitted by the authors.
Filename | Description |
---|---|
smll_200801598_sm_video.mov1 MB | video |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
L. M. Fidalgo,
G. Whyte,
D. Bratton,
C. F. Kaminski,
C. Abell,
W. T. S. Huck,
Angew. Chem.
2008,
120,
2072;
10.1002/ange.200704903 Google ScholarAngew. Chem. Int. Ed. 2008, 47, 2042.
- 2
D. R. Link,
E. Grasland-Mongrain,
A. Duri,
F. Sarrazin,
Z. D. Cheng,
G. Cristobal,
M. Marquez,
D. A. Weitz,
Angew. Chem.
2006,
118,
2618;
10.1002/ange.200503540 Google ScholarAngew. Chem. Int. Ed. 2006, 45, 2556.
- 3 S. Y. Teh, R. Lin, L. H. Hung, A. P. Lee, Lab Chip 2008, 8, 198.
- 4
H. Song,
D. L. Chen,
R. F. Ismagilov,
Angew. Chem.
2006,
118,
7494;
10.1002/ange.200601554 Google ScholarAngew. Chem. Int. Ed. 2006, 45, 7336.
- 5 T. Thorsen, R. W. Roberts, F. H. Arnold, S. R. Quake, Phys. Rev. Lett. 2001, 86, 4163.
- 6 T. Nisisako, T. Torii, T. Higuchi, Lab Chip 2002, 2, 24.
- 7 P. Garstecki, H. A. Stone, G. M. Whitesides, Phys. Rev. Lett. 2005, 94, 164501.
- 8 Y. C. Tan, V. Cristini, A. P. Lee, Sens. Actuators B 2006, 114, 350.
- 9 K. Ahn, J. Agresti, H. Chong, M. Marquez, D. A. Weitz, Appl. Phys. Lett. 2006, 88, 264105.
- 10 L. M. Fidalgo, C. Abell, W. T. S. Huck, Lab Chip 2007, 7, 984.
- 11 Y. C. Tan, J. S. Fisher, A. I. Lee, V. Cristini, A. P. Lee, Lab Chip 2004, 4, 292.
- 12 D. R. Link, S. L. Anna, D. A. Weitz, H. A. Stone, Phys. Rev. Lett. 2004, 92, 054503.
- 13 K. Ahn, C. Kerbage, T. P. Hunt, R. M. Westervelt, D. R. Link, D. A. Weitz, Appl. Phys. Lett. 2006, 88, 024104.
- 14 R. Mukhopadhyay, Anal. Chem. 2006, 78, 1401.
- 15 M. Srisa-Art, A. J. deMello, J. B. Edel, Anal. Chem. 2007, 79, 6682.
- 16
J. Pipper,
Y. Zhang,
P. Neuzil,
T. M. Hsieh,
Angew. Chem.
2008,
120,
3964;
10.1002/ange.200705016 Google ScholarAngew. Chem. Int. Ed. 2008, 47, 3900.
- 17 B. Zheng, L. S. Roach, R. F. Ismagilov, J. Am. Chem. Soc. 2003, 125, 11170.
- 18 D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578.
- 19
B. K. H. Yen,
A. Gunther,
M. A. Schmidt,
K. F. Jensen,
M. G. Bawendi,
Angew. Chem.
2005,
117,
5583;
10.1002/ange.200500792 Google ScholarAngew. Chem. Int. Ed. 2005, 44, 5447.
- 20 E. M. Chan, A. P. Alivisatos, R. A. Mathies, J. Am. Chem. Soc. 2005, 127, 13854.
- 21
D. Belder,
Angew. Chem.
2005,
117,
3587;
10.1002/ange.200500620 Google ScholarAngew. Chem. Int. Ed. 2005, 44, 3521.
- 22 S. Q. Xu, Z. H. Nie, M. Seo, P. Lewis, E. Kumacheva, H. A. Stone, P. Garstecki, D. B. Weibel, I. Gitlin, G. M. Whitesides, Angew. Chem. 2005, 117, 734; Angew. Chem. Int. Ed. 2005, 44, 724.
- 23 A. Fernandez-Nieves, G. Cristobal, V. Garces-Chavez, G. C. Spalding, K. Dholakia, D. A. Weitz, Adv. Mater. 2005, 17, 680.
- 24 Z. H. Nie, S. Q. Xu, M. Seo, P. C. Lewis, E. Kumacheva, J. Am. Chem. Soc. 2005, 127, 8058.
- 25 B. Zheng, J. D. Tice, R. F. Ismagilov, Anal. Chem. 2004, 76, 4977.
- 26 C. Priest, S. Herminghaus, R. Seemann, Appl. Phys. Lett. 2006, 89, 134101.
- 27 M. Chabert, K. D. Dorfman, J. L. Viovy, Electrophoresis 2005, 26, 3706.
- 28 P. Singh, N. Aubry, Electrophoresis 2007, 28, 644.
- 29
A. Cemal Eringen,
G. A. Maugin,
Electrodynamics of Continua: Fluids and Complex Media, Vol.
2,
Springer,
New York
1990.
10.1007/978-1-4612-3226-1 Google Scholar
- 30 D. A. Saville, Annu. Rev. Fluid Mech. 1997, 29, 27.
- 31 P. H. G. Allen, T. G. Karayiannis, Heat Recovery Syst. CHP 1995, 15, 389.
- 32 J. S. Eow, M. Ghadiri, A. O. Sharif, T. J. Williams, Chem. Eng. J. 2001, 84, 173.
- 33
J. C. McDonald,
D. C. Duffy,
J. R. Anderson,
D. T. Chiu,
H. K. Wu,
O. J. A. Schueller,
G. M. Whitesides,
Electrophoresis
2000,
21,
27.
10.1002/(SICI)1522-2683(20000101)21:1<27::AID-ELPS27>3.0.CO;2-C CAS PubMed Web of Science® Google Scholar