Population-based prevalence surveys during the Covid-19 pandemic: A systematic review
Vinícius Bonetti Franceschi
Graduate Program in Cell and Molecular Biology (PPGBCM), Center of Biotechnology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
Search for more papers by this authorAndressa Schneiders Santos
Undergraduate Program in Biomedicine, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
Search for more papers by this authorAndressa Barreto Glaeser
Graduate Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
Search for more papers by this authorJanini Cristina Paiz
Graduate Program in Epidemiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
Search for more papers by this authorGabriel Dickin Caldana
Graduate Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
Search for more papers by this authorCarem Luana Machado Lessa
Graduate Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
Search for more papers by this authorAmanda de Menezes Mayer
Graduate Program in Cell and Molecular Biology (PPGBCM), Center of Biotechnology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
Search for more papers by this authorJulia Gonçalves Küchle
Undergraduate Program in Biomedical Informatics, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
Search for more papers by this authorPaulo Ricardo Gazzola Zen
Graduate Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
Department of Internal Medicine, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
Search for more papers by this authorAlvaro Vigo
Graduate Program in Epidemiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
Department of Statistics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
Search for more papers by this authorAna Trindade Winck
Department of Exact and Social Applied Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
Search for more papers by this authorLiane Nanci Rotta
Graduate Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
Department of Diagnostic Methods, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
Search for more papers by this authorCorresponding Author
Claudia Elizabeth Thompson
Graduate Program in Cell and Molecular Biology (PPGBCM), Center of Biotechnology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
Graduate Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
Department of Pharmacosciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
Correspondence
Claudia Elizabeth Thompson, Department of Pharmacosciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), 245/200C Sarmento Leite St, Porto Alegre, RS 90050-170, Brazil.
Email: [email protected], [email protected]
Search for more papers by this authorVinícius Bonetti Franceschi
Graduate Program in Cell and Molecular Biology (PPGBCM), Center of Biotechnology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
Search for more papers by this authorAndressa Schneiders Santos
Undergraduate Program in Biomedicine, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
Search for more papers by this authorAndressa Barreto Glaeser
Graduate Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
Search for more papers by this authorJanini Cristina Paiz
Graduate Program in Epidemiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
Search for more papers by this authorGabriel Dickin Caldana
Graduate Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
Search for more papers by this authorCarem Luana Machado Lessa
Graduate Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
Search for more papers by this authorAmanda de Menezes Mayer
Graduate Program in Cell and Molecular Biology (PPGBCM), Center of Biotechnology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
Search for more papers by this authorJulia Gonçalves Küchle
Undergraduate Program in Biomedical Informatics, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
Search for more papers by this authorPaulo Ricardo Gazzola Zen
Graduate Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
Department of Internal Medicine, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
Search for more papers by this authorAlvaro Vigo
Graduate Program in Epidemiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
Department of Statistics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
Search for more papers by this authorAna Trindade Winck
Department of Exact and Social Applied Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
Search for more papers by this authorLiane Nanci Rotta
Graduate Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
Department of Diagnostic Methods, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
Search for more papers by this authorCorresponding Author
Claudia Elizabeth Thompson
Graduate Program in Cell and Molecular Biology (PPGBCM), Center of Biotechnology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
Graduate Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
Department of Pharmacosciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
Correspondence
Claudia Elizabeth Thompson, Department of Pharmacosciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), 245/200C Sarmento Leite St, Porto Alegre, RS 90050-170, Brazil.
Email: [email protected], [email protected]
Search for more papers by this authorSummary
Population-based prevalence surveys of Covid-19 contribute to establish the burden of infection, the role of asymptomatic and mild infections in transmission, and allow more precise decisions about reopen policies. We performed a systematic review to evaluate qualitative aspects of these studies, assessing their reliability and compiling practices that can influence the methodological quality. We searched MEDLINE, EMBASE, bioRxiv and medRxiv, and included cross-sectional studies using molecular and/or serological tests to estimate the prevalence of Covid-19 in the general population. Survey quality was assessed using the Joanna Briggs Institute Critical Appraisal Checklist for Prevalence Studies. A correspondence analysis correlated methodological parameters of each study to identify patterns related to higher, intermediate and lower risks of bias. The available data described 37 surveys from 19 countries. The majority were from Europe and America, used antibody testing, and reached highly heterogeneous sample sizes and prevalence estimates. Minority communities were disproportionately affected by Covid-19. Important risk of bias was detected in four domains: sample size, data analysis with sufficient coverage, measurements in standard way and response rate. The correspondence analysis showed few consistent patterns for high risk of bias. Intermediate risk of bias was related to American and European studies, municipal and regional initiatives, blood samples and prevalence >1%. Low risk of bias was related to Asian studies, nationwide initiatives, reverse-transcriptase polymerase chain reaction tests and prevalence <1%. We identified methodological standards applied worldwide in Covid-19 prevalence surveys, which may assist researchers with the planning, execution and reporting of future population-based surveys.
CONFLICT OF INTEREST
The authors declare no competing interests.
Open Research
DATA AVAILABILITY STATEMENT
The authors affirm that the processed data supporting our findings are available within the article and its supplementary materials. Raw data are accessible upon request to the corresponding author (Claudia Elizabeth Thompson).
Supporting Information
Filename | Description |
---|---|
rmv2200-sup-0001-suppl-data.docx769.6 KB | Supplementary Material |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1 Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395(10223): 497-506. https://doi.org/10.1016/S0140-6736(20)30183-5.
- 2 Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020; 382(8): 727-733. https://doi.org/10.1056/NEJMoa2001017.
- 3 WHO Director-General's opening remarks at the media briefing on COVID-19. 2020. https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020. Accessed October 21, 2020.
- 4 WHO coronavirus disease (COVID-19) dashboard. https://covid19.who.int. Accessed October 21, 2020.
- 5 COVID-19 MAP. Johns Hopkins Coronavirus Resource Center. https://coronavirus.jhu.edu/map.html. Accessed October 21, 2020.
- 6 Li Q, Guan X, Wu P, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. N Engl J Med. 2020; 29. https://doi.org/10.1056/NEJMoa2001316.
- 7
Corman VM, Landt O, Kaiser M, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill. 2020; 25(3):2000045. https://doi.org/10.2807/1560-7917.ES.2020.25.3.2000045.
10.2807/1560-7917.ES.2020.25.3.2000045 Google Scholar
- 8 Centers for Disease Control and Prevention (CDC). Coronavirus Disease 2019 (COVID-19). 2020. https://www.cdc.gov/coronavirus/2019-ncov/symptoms-testing/testing.html. Published February 11, Accessed October 21, 2020.
- 9 Guan W, Ni Z, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 382: 1708-1720. https://doi.org/10.1056/NEJMoa2002032. Published online February 28, 2020.
- 10 Lipsitch M, Swerdlow DL, Finelli L. Defining the epidemiology of Covid-19 – studies needed. N Engl J Med. 2020; 382(13): 1194-1196. https://doi.org/10.1056/NEJMp2002125.
- 11 World Health Organization. Population-based age-stratified seroepidemiological investigation protocol for COVID-19 Virus Infection. 2020. https://apps.who.int/iris/handle/10665/331656. Published online 2020. Accessed October 21, 2020.
- 12 Tang Y-W, Schmitz JE, Persing DH, Stratton CW. Laboratory diagnosis of COVID-19: current issues and challenges. J Clin Microbiol. 2020; 58(6). https://doi.org/10.1128/JCM.00512-20.
- 13 Munn Z, Moola S, Lisy K, Riitano D, Tufanaru C. Methodological guidance for systematic reviews of observational epidemiological studies reporting prevalence and cumulative incidence data. JBI Evid Implement. 2015; 13(3): 147-153. https://doi.org/10.1097/XEB.0000000000000054.
- 14 Bastos ML, Tavaziva G, Abidi SK, et al. Diagnostic accuracy of serological tests for Covid-19: systematic review and meta-analysis. Br Med J. 2020; 370:m2516. https://doi.org/10.1136/bmj.m2516.
- 15 McGuinness LA, Higgins JPT. Risk-of-bias VISualization (robvis): an R package and Shiny web app for visualizing risk-of-bias assessments. Res Synth Methods. https://doi.org/10.1002/jrsm.1411.
- 16 Majiya H, Aliyu-Paiko M, Balogu VT, et al. Seroprevalence of COVID-19 in Niger state. medRxiv. 2020. https://doi.org/10.1101/2020.08.04.20168112.
- 17 Cao S, Gan Y, Wang C, et al. Citywide nucleic acid screening of SARS-CoV-2 infections in post-lockdown Wuhan, China: results and implications. medRxiv. 2020. https://doi.org/10.1101/2020.06.29.20142554. Published online June 30.
- 18 Malani A, Shah D, Kang G, et al. Seroprevalence of SARS-CoV-2 in slums and non-slums of Mumbai, India, during June 29-July 19, 2020. medRxiv. 2020. https://doi.org/10.1101/2020.08.27.20182741. Published online September 1, 2020.
- 19 Shakiba M, Nazari SSH, Mehrabian F, Rezvani SM, Ghasempour Z, Heidarzadeh A. Seroprevalence of COVID-19 virus infection in Guilan province, Iran. medRxiv. 2020. https://doi.org/10.1101/2020.04.26.20079244. Published online May 1, 2020.
- 20 Nawa N, Kuramochi J, Sonoda S, et al. Seroprevalence of SARS-CoV-2 IgG antibodies in Utsunomiya city, Greater Tokyo, after first pandemic in 2020 (U-CORONA): a household- and population-based study. medRxiv. https://doi.org/10.1101/2020.07.20.20155945. Published online July 26, 2020.
- 21 Qutob N, Awartani F, Salah Z, et al. Seroprevalence of SARS-CoV-2 in Palestine: a cross-sectional seroepidemiological study. medRxiv. https://doi.org/10.1101/2020.08.28.20180083. Published online September 2, 2020.
- 22 Petersen MS, Strøm M, Christiansen DH, et al. Seroprevalence of SARS-CoV-2–specific antibodies, Faroe Islands. Emerg Infect Dis. 2020; 26(11): 2761-2763. https://doi.org/10.3201/eid2611.202736.
- 23 Riley S, Ainslie KEC, Eales O, et al. Community prevalence of SARS-CoV-2 virus in England during May 2020: REACT study. medRxiv. https://doi.org/10.1101/2020.07.10.20150524. Published online July 11, 2020.
- 24 Ward H, Atchison CJ, Whitaker M, et al. Antibody prevalence for SARS-CoV-2 in England following first peak of the pandemic: REACT2 study in 100,000 adults. medRxiv. https://doi.org/10.1101/2020.08.12.20173690. Published online August 21, 2020.
- 25 Weis S, Scherag A, Baier M, et al. Seroprevalence of SARS-CoV-2 antibodies in an entirely PCR-sampled and quarantined community after a COVID-19 outbreak - the CoNAN study. medRxiv. https://doi.org/10.1101/2020.07.15.20154112. Published online July 17, 2020.
- 26 Merkely B, Szabó AJ, Kosztin A, et al. Novel coronavirus epidemic in the Hungarian population, a cross-sectional nationwide survey to support the exit policy in Hungary. GeroScience. 2020; 42(4): 1063-1074. https://doi.org/10.1007/s11357-020-00226-9.
- 27 Gudbjartsson DF, Helgason A, Jonsson H, et al. Spread of SARS-CoV-2 in the Icelandic population. N Engl J Med. 2020; 382(24): 2302-2315. https://doi.org/10.1056/NEJMoa2006100.
- 28 Pagani G, Conti F, Giacomelli A, et al. Seroprevalence of SARS-CoV-2 significantly varies with age: results from a mass population screening. J Infect. 2020; S0163-4453(20):30629. https://doi.org/10.1016/j.jinf.2020.09.021.
- 29 Lavezzo E, Franchin E, Ciavarella C, et al. Suppression of a SARS-CoV-2 outbreak in the Italian municipality of Vo. Nature. 2020; 584 (7821): 425–429. https://doi.org/10.1038/s41586-020-2488-1.
- 30 Snoeck CJ, Vaillant M, Abdelrahman T, et al. Prevalence of SARS-CoV-2 infection in the Luxembourgish population: the CON-VINCE study. medRxiv. https://doi.org/10.1101/2020.05.11.20092916. Published online May 18, 2020.
- 31 Vodičar PM, Valenčak AO, Zupan B, et al. Low prevalence of active COVID-19 in Slovenia: a nationwide population study of a probability-based sample. Clin Microbiol Infect. 2020. https://doi.org/10.1016/j.cmi.2020.07.013.
- 32 Pollán M, Pérez-Gómez B, Pastor-Barriuso R, et al. Prevalence of SARS-CoV-2 in Spain (ENE-COVID): a nationwide, population-based seroepidemiological study. Lancet. 2020. https://doi.org/10.1016/S0140-6736(20)31483-5.
- 33 Brotons C, Serrano J, Fernandez D, et al. Seroprevalence against COVID-19 and follow-up of suspected cases in primary health care in Spain. medRxiv. https://doi.org/10.1101/2020.06.13.20130575. Published online June 16, 2020.
- 34 Lundkvist Å, Hanson S, Olsen B. Pronounced difference in Covid-19 antibody prevalence indicates cluster transmission in Stockholm, Sweden. Infect Ecol Epidemiol. 2020; 10(1):1806505. https://doi.org/10.1080/20008686.2020.1806505.
- 35 Roxhed N, Bendes A, Dale M, et al. A translational multiplex serology approach to profile the prevalence of anti-SARS-CoV-2 antibodies in home-sampled blood. medRxiv. https://doi.org/10.1101/2020.07.01.20143966. Published online July 2, 2020.
- 36 Stringhini S, Wisniak A, Piumatti G, et al. Seroprevalence of anti-SARS-CoV-2 IgG antibodies in Geneva, Switzerland (SEROCoV-POP): a population-based study. Lancet. 2020. https://doi.org/10.1016/S0140-6736(20)31304-0.
- 37 Sood N, Simon P, Ebner P, et al. Seroprevalence of SARS-CoV-2–specific antibodies among adults in Los angeles county, California, on April 10-11, 2020. J Am Med Assoc. 2020; 323(23): 2425-2427. https://doi.org/10.1001/jama.2020.8279.
- 38 Bendavid E, Mulaney B, Sood N, et al. COVID-19 antibody seroprevalence in Santa Clara county, California. medRxiv. https://doi.org/10.1101/2020.04.14.20062463. Published online April 30, 2020.
- 39 Mahajan S, Srinivasan R, Redlich CA, et al. Seroprevalence of SARS-CoV-2-Specific IgG Antibodies Among Adults Living in Connecticut: post-Infection Prevalence (PIP) Study. Am J Med. 2020. https://doi.org/10.1016/j.amjmed.2020.09.024.
- 40 Biggs HM. Estimated community seroprevalence of SARS-CoV-2 antibodies – two Georgia Counties. MMWR Morb Mortal Wkly Rep. 2020; 69. https://doi.org/10.15585/mmwr.mm6929e2.
- 41 McLaughlin C, Doll MK, Morrison KT, et al. High community SARS-CoV-2 antibody seroprevalence in a Ski resort community, Blaine county, Idaho, US. Preliminary results. medRxiv. https://doi.org/10.1101/2020.07.19.20157198. Published online July 21, 2020.
- 42 Menachemi N. Population point prevalence of SARS-CoV-2 infection based on a statewide random sample — Indiana, April 25–29, 2020. MMWR Morb Mortal Wkly Rep. 2020; 69. https://doi.org/10.15585/mmwr.mm6929e1.
- 43 Feehan AK, Velasco C, Fort D, et al. Racial and Workplace Disparities in Seroprevalence of SARS-CoV-2, Baton Rouge, Louisiana, USA. Emerging Infect Dis. 2021; 27(1). https://doi.org/10.3201/eid2701.203808.
- 44 Feehan AK, Fort D, Garcia-Diaz J, et al. Seroprevalence of SARS-CoV-2 and Infection Fatality Ratio, Orleans and Jefferson Parishes, Louisiana, USA, May 2020. Emerging Infect Dis. 2020; 26(11): 2765–2768. http://doi.org/10.3201/eid2611.203029.
- 45 Figar S, Pagotto V, Luna L, et al. Community-level SARS-CoV-2 seroprevalence survey in urban slum dwellers of Buenos aires city, Argentina: a participatory research. medRxiv. https://doi.org/10.1101/2020.07.14.20153858. Published online July 18, 2020.
- 46 Hallal P, Hartwig F, Horta B, et al. Remarkable variability in SARS-CoV-2 antibodies across Brazilian regions: nationwide serological household survey in 27 states. medRxiv. https://doi.org/10.1101/2020.05.30.20117531. Published online May 30, 2020.
- 47 Gomes CC, Cerutti C, Zandonade E, et al. A population-based study of the prevalence of COVID-19 infection in Espirito Santo, Brazil: methodology and results of the first stage. medRxiv. https://doi.org/10.1101/2020.06.13.20130559. Published online June 16, 2020.
- 48 Silva AAMda, Neto LGL, Azevedo CMPS, et al. Population-based seroprevalence of SARS-CoV-2 is more than halfway through the herd immunity threshold in the State of Maranhao, Brazil. medRxiv. https://doi.org/10.1101/2020.08.28.20180463. Published online September 1, 2020.
- 49 Vieira MA da C e S, Vieira CP de B, Borba A de S, et al. Sequential serological surveys in the early stages of the coronavirus disease epidemic: limitations and perspectives. Rev Soc Bras Med Trop. 2020; 53. https://doi.org/10.1590/0037-8682-0351-2020.
- 50 Silveira MF, Barros AJD, Horta BL, et al. Population-based surveys of antibodies against SARS-CoV-2 in Southern Brazil. Nat Med. 2020: 1-4. https://doi.org/10.1038/s41591-020-0992-3. Published online July 8.
- 51 Tess BH, Granato CFH, Alves MCGP, et al. SARS-CoV-2 seroprevalence in the municipality of Sao Paulo, Brazil, ten weeks after the first reported case. medRxiv. https://doi.org/10.1101/2020.06.29.20142331. Published online June 29, 2020.
- 52 Calife K, Caseiro MM, Barrosdos CRS, et al. COVID-19 seroprevalence in Baixada Santista metropolitan area, Sao Paulo, Brazil. medRxiv. https://doi.org/10.1101/2020.08.28.20184010. Published online September 1, 2020.
- 53 Draugalis JR, Coons SJ, Plaza CM. Best practices for survey research reports: a synopsis for authors and reviewers. Am J Pharm Educ. 2008; 72(1). https://doi.org/10.5688/aj720111.
- 54 So R, Shinohara K, Aoki T, Tsujimoto Y, Suganuma AM, Furukawa TA. Effect of recruitment methods on response rate in a web-based study for primary care physicians: factorial randomized controlled trial. J Med Internet Res. 2018; 20(2):e28. https://doi.org/10.2196/jmir.8561.
- 55 Cook C, Heath F, Thompson RL. A Meta-Analysis of Response Rates in Web- or Internet-Based Surveys. Educ Psychol Meas. 2000; 60 (6): 821–836. http://doi.org/10.1177/00131640021970934.
- 56 Naing L, Winn T, Rusli BN. Practical issues in calculating the sample size for prevalence studies. Arch Orofacial Sci. 2006; 1: 9-14.
- 57 Tahamtan A, Ardebili A. Real-time RT-PCR in COVID-19 detection: issues affecting the results. Expert Rev Mol Diagn. 2020; 20(5): 453-454. https://doi.org/10.1080/14737159.2020.1757437.
- 58 Leung GM, Lim WW, Ho L-M, et al. Seroprevalence of IgG antibodies to SARS-coronavirus in asymptomatic or subclinical population groups. Epidemiol Infect. 2006; 134(2): 211-221. https://doi.org/10.1017/S0950268805004826.
- 59 Degnah AA, Al-amri SS, Hassan AM, et al. Seroprevalence of MERS-CoV in healthy adults in western Saudi Arabia, 2011–2016. J Infect Public Health. 2020; 13(5): 697-703. https://doi.org/10.1016/j.jiph.2020.01.001.
- 60 Abuelgasim E, Saw LJ, Shirke M, Zeinah M, Harky A. COVID-19: unique public health issues facing Black, Asian and minority ethnic communities. Curr Probl Cardiol. 2020; 45(8):100621. https://doi.org/10.1016/j.cpcardiol.2020.100621.
- 61 Millett GA, Jones AT, Benkeser D, et al. Assessing differential impacts of COVID-19 on black communities. Ann Epidemiol. 2020; 47: 37-44. https://doi.org/10.1016/j.annepidem.2020.05.003.
- 62 Baqui P, Bica I, Marra V, Ercole A, van der Schaar M. Ethnic and regional variations in hospital mortality from COVID-19 in Brazil: a cross-sectional observational study. Lancet Glob Health. 2020; 8(8): e1018-e1026. https://doi.org/10.1016/S2214-109X(20)30285-0.
- 63 Pinto AS, Rodrigues CA, Sobrinho CL, et al. Covid-19 epidemic curve in Brazil: a sum of multiple epidemics, whose income inequality and population density in the states are correlated with growth rate and daily acceleration. medRxiv. https://doi.org/10.1101/2020.09.09.20191353. Published online September 14, 2020.