Theoretical Insights into Photovoltaic Application of a Novel Family of Perovskite-Inspired Pb-Free Metal Halide Materials
Huanhuan Li
School of Science, Chongqing University of Technology, Chongqing, 400054 P. R. China
Search for more papers by this authorChuanqian Peng
School of Science, Chongqing University of Technology, Chongqing, 400054 P. R. China
Search for more papers by this authorGuangping Zheng
School of Science, Chongqing University of Technology, Chongqing, 400054 P. R. China
Search for more papers by this authorCorresponding Author
Shuai Zhao
School of Science, Chongqing University of Technology, Chongqing, 400054 P. R. China
Search for more papers by this authorCorresponding Author
Zhanglin Guo
Graduate School of Engineering, Toin University of Yokohama, 1614 Kuroganecho, Aoba, Yokohama, Kanagawa, 225-8503 Japan
Search for more papers by this authorHuanhuan Li
School of Science, Chongqing University of Technology, Chongqing, 400054 P. R. China
Search for more papers by this authorChuanqian Peng
School of Science, Chongqing University of Technology, Chongqing, 400054 P. R. China
Search for more papers by this authorGuangping Zheng
School of Science, Chongqing University of Technology, Chongqing, 400054 P. R. China
Search for more papers by this authorCorresponding Author
Shuai Zhao
School of Science, Chongqing University of Technology, Chongqing, 400054 P. R. China
Search for more papers by this authorCorresponding Author
Zhanglin Guo
Graduate School of Engineering, Toin University of Yokohama, 1614 Kuroganecho, Aoba, Yokohama, Kanagawa, 225-8503 Japan
Search for more papers by this authorAbstract
Organic–inorganic halide perovskite have shown great promise for photovoltaic applications due to their unprecedented optoelectronic properties and low manufacturing cost. However, the commercialization of this emerging technology is hampered by its thermal instability and intrinsic Pb-toxicity. Here, we report first-principles investigations on stability and optoelectronic properties of a series of all-inorganic lead-free metal halide perovskite-like materials AMX4 (A = Cs, Ag, and Rb; M = In, Sb, and Bi; X = Cl, Br, and I). Our calculations show that AgSbI4 and AgBiI4 have direct bandgaps of 1.63 and 1.44 eV, which possess strong interband optical absorption (≈105 cm−1). Based on these favorable properties, we also simulated the AgSbI4- and AgBiI4-based thin film solar cells with the SCAPS-1D code and achieve high PCE of 24.19% and 26.70%, respectively. These results reveal that the AMX4 perovskite-like materials could serve as potential alternatives to Pb-based halide perovskites in photovoltaic devices.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
pssr202300123-sup-0001-SuppData-S1.pdf638.3 KB | Supplementary Material |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1W. J. Yin, T. Shi, Y. Yan, Adv. Mater. 2014, 26, 4653.
- 2N.-G. Park, M. Grätzel, T. Miyasaka, K. Zhu, K. Emery, Nat. Energy 2016, 1.
- 3W. Zhang, G. E. Eperon, H. J. Snaith, Nat. Energy 2016, 1.
- 4A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 2009, 131, 6050.
- 5M. Liu, M. B. Johnston, H. J. Snaith, Nature 2013, 501, 395.
- 6H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Gratzel, N. G. Park, Sci. Rep. 2012, 2, 591.
- 7S. Yakunin, M. Sytnyk, D. Kriegner, S. Shrestha, M. Richter, G. J. Matt, H. Azimi, C. J. Brabec, J. Stangl, M. V. Kovalenko, W. Heiss, Nat. Photonics 2015, 9, 444.
- 8S. Park, W. J. Chang, C. W. Lee, S. Park, H. Y. Ahn, K. T. Nam, Nat. Energy 2016, 2.
- 9N. Yantara, S. Bhaumik, F. Yan, D. Sabba, H. A. Dewi, N. Mathews, P. P. Boix, H. V. Demir, S. Mhaisalkar, J. Phys. Chem. Lett. 2015, 6, 4360.
- 10J. Song, J. Li, X. Li, L. Xu, Y. Dong, H. Zeng, Adv. Mater. 2015, 27, 7162.
- 11J. Li, X. Shan, S. G. R. Bade, T. Geske, Q. Jiang, X. Yang, Z. Yu, J. Phys. Chem. Lett. 2016, 7, 4059.
- 12A. M. Ganose, C. N. Savory, D. O. Scanlon, Chem. Commun. 2016, 53, 20.
- 13Y. Jing, Y. Liu, X. Jiang, M. S. Molokeev, Z. Lin, Z. Xia, Chem. Mater. 2020, 32, 5327.
- 14Y. Liu, X. Rong, M. Li, M. S. Molokeev, J. Zhao, Z. Xia, Angew. Chem. Int. Ed. Engl. 2020, 59, 11634.
- 15A. Jain, O. Voznyy, E. H. Sargent, J. Phys. Chem. C 2017, 121, 7183.
- 16K. Han, J. Qiao, S. Zhang, B. Su, B. Lou, C.-G. Ma, Z. Xia, Laser Photon. Rev. 2022, 17, 2200458.
- 17J. Jin, Y. Peng, Y. Xu, K. Han, A. Zhang, X. B. Yang, Z. Xia, Chem. Mater. 2022, 34, 5717.
- 18F. Hao, C. C. Stoumpos, D. H. Cao, R. P. H. Chang, M. G. Kanatzidis, Nat. Photon. 2014, 8, 489.
- 19N. K. Noel, S. D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A. A. Haghighirad, A. Sadhanala, G. E. Eperon, S. K. Pathak, M. B. Johnston, A. Petrozza, L. M. Herz, H. J. Snaith, Energy Environ. Sci. 2014, 7, 3061.
- 20K. Nishimura, M. A. Kamarudin, D. Hirotani, K. Hamada, Q. Shen, S. Iikubo, T. Minemoto, K. Yoshino, S. Hayase, Nano Energy 2020, 74.
- 21Y. Liu, A. Nag, L. Manna, Z. Xia, Angew. Chem. Int. Ed. Engl. 2021, 60, 11592.
- 22M. Lyu, J. H. Yun, M. Cai, Y. Jiao, P. V. Bernhardt, M. Zhang, Q. Wang, A. Du, H. Wang, G. Liu, L. Wang, Nano Res. 2016, 9, 692.
- 23B. W. Park, B. Philippe, X. Zhang, H. Rensmo, G. Boschloo, E. M. Johansson, Adv. Mater 2015, 27, 6806.
- 24F. H. B. Saparov, J.-P. Sun, H.-S. Duan, W. Meng, S. Cameron, I. G. Hill, Y. Yan, D. B. Mitzi, Chem. Mater. 2015, 27, 5622.
- 25P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, et al., J. Phys. Condens. Matter 2009, 21, 395502.
- 26P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. Buongiorno Nardelli, M. , R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, A. Dal Corso, S. de Gironcoli, P. Delugas, R. A. DiStasio Jr., A. Ferretti, A. Floris, G. Fratesi, G. Fugallo, R. Gebauer, U. Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kawamura, H. Y. Ko, A. Kokalj, E. Kucukbenli, M. Lazzeri, et al., J. Phys. Condens. Matter 2017, 29, 465901.
- 27P. E. Blochl, Phys. Rev. B. Condens. Matter 1994, 50, 17953.
- 28J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
- 29F. Tran, P. Blaha, Phys. Rev. Lett. 2009, 102.
- 30W. Zulfiqar, S. M. Alay-E-Abbas, G. Abbas, A. Laref, J. A. Larsson, A. Shaukat, J. Mater. Chem. C Mater. 2021, 9, 4862.
- 31K. Momma, F. Izumi, Journal. of. Applied. Crystallography 2011, 44, 1272.
- 32A. Togo, I. Tanaka, Scr. Mater. 2015, 108, 1.
- 33M. Gajdoš, K. Hummer, G. Kresse, J. Furthmüller, F. Bechstedt, Phys. Rev. B 2006, 73, 045112.
- 34K. Decock, S. Khelifi, M. Burgelman, Thin Solid Films 2011, 519, 7481.
- 35J. Verschraegen, M. Burgelman, Thin Solid Films 2007, 515, 6276.
- 36M. Burgelman, J. Verschraegen, S. Degrave, P. Nollet, Progr. Photovolt: Res. Appl. 2004, 12, 143.
- 37R. Lin, K. Xiao, Z. Qin, Q. Han, C. Zhang, M. Wei, M. I. Saidaminov, Y. Gao, J. Xu, M. Xiao, A. Li, J. Zhu, E. H. Sargent, H. Tan, Nat. Energy 2019, 4, 864.
- 38G. Y. Chen, Z. D. Guo, X. G. Gong, W. J. Yin, Chem 2022, 3120.
- 39K. Kim, D. J. Siegel, J. Mater. Chem. A 2019, 7, 3216.
- 40M. B. Gray, E. T. McClure, N. P. Holzapfel, F. P. Evaristo, W. Windl, P. M. Woodward, J. Solid State Chem. 2021, 297, 121997.
- 41L. Yu, A. Zunger, Phys. Rev. Lett. 2012, 108, 068701.
- 42W. H. Guo, Y. H. Zhu, M. Zhang, J. Du, Y. L. Cen, S. M. Liu, Y. He, H. X. Zhong, X. Wang, J. J. Shi, J. Mater. Chem. A 2021, 9, 16436.
- 43D. Jayan, K. V. Sebastian, J. Kurian,, Sol. Energy 2021, 221, 99.
- 44M. Tripathi, V. Vaibhav Mishra, B. S. Sengar, A. V. Ullas, Mater. Today. Proc. 2022, 62, 4327.
- 45Y. Zhou, G. Long, J. Phys. Chem. C 2017, 121, 1455.
- 46M. K. Hossain, G. F. I. Toki, I. Alam, R. Pandey, D. P. Samajdar, N. J. Chem. 2023, 47, 4801.