Stress and charge transfer in uniaxially strained CVD graphene
Corresponding Author
Milan Bousa
J. Heyrovsky Institute of Physical Chemistry of the AS CR v.v.i., Dolejskova 2155/3, CZ 182 23 Prague 8, Czech Republic
Faculty of Science, Department of Inorganic Chemistry, Charles University in Prague, Albertov 6, CZ 128 43 Prague 2, Czech Republic
Corresponding author: e-mail [email protected], Phone: +420 266 053 955, Fax: +420 286 582 307
Search for more papers by this authorGeorge Anagnostopoulos
Institute of Chemical Engineering Sciences, Foundation for Research and Technology − Hellas (FORTH/ICE-HT), P.O. Box 1414, 265 04 Patras, Greece
Search for more papers by this authorElena del Corro
J. Heyrovsky Institute of Physical Chemistry of the AS CR v.v.i., Dolejskova 2155/3, CZ 182 23 Prague 8, Czech Republic
Search for more papers by this authorKarolina Drogowska
J. Heyrovsky Institute of Physical Chemistry of the AS CR v.v.i., Dolejskova 2155/3, CZ 182 23 Prague 8, Czech Republic
Search for more papers by this authorJan Pekarek
Faculty of Electrical Engineering and Communication, Centre of Sensors, Information and Communication Systems, Brno University of Technology, Technicka, 3058/10 CZ 616 00 Brno, Czech Republic
Search for more papers by this authorLadislav Kavan
J. Heyrovsky Institute of Physical Chemistry of the AS CR v.v.i., Dolejskova 2155/3, CZ 182 23 Prague 8, Czech Republic
Faculty of Science, Department of Inorganic Chemistry, Charles University in Prague, Albertov 6, CZ 128 43 Prague 2, Czech Republic
Search for more papers by this authorMartin Kalbac
J. Heyrovsky Institute of Physical Chemistry of the AS CR v.v.i., Dolejskova 2155/3, CZ 182 23 Prague 8, Czech Republic
Search for more papers by this authorJohn Parthenios
Institute of Chemical Engineering Sciences, Foundation for Research and Technology − Hellas (FORTH/ICE-HT), P.O. Box 1414, 265 04 Patras, Greece
Search for more papers by this authorKonstantinos Papagelis
Institute of Chemical Engineering Sciences, Foundation for Research and Technology − Hellas (FORTH/ICE-HT), P.O. Box 1414, 265 04 Patras, Greece
Search for more papers by this authorCostas Galiotis
Institute of Chemical Engineering Sciences, Foundation for Research and Technology − Hellas (FORTH/ICE-HT), P.O. Box 1414, 265 04 Patras, Greece
Department of Chemical Engineering, University of Patras, 26504 Patras, Greece
Search for more papers by this authorOtakar Frank
J. Heyrovsky Institute of Physical Chemistry of the AS CR v.v.i., Dolejskova 2155/3, CZ 182 23 Prague 8, Czech Republic
Search for more papers by this authorCorresponding Author
Milan Bousa
J. Heyrovsky Institute of Physical Chemistry of the AS CR v.v.i., Dolejskova 2155/3, CZ 182 23 Prague 8, Czech Republic
Faculty of Science, Department of Inorganic Chemistry, Charles University in Prague, Albertov 6, CZ 128 43 Prague 2, Czech Republic
Corresponding author: e-mail [email protected], Phone: +420 266 053 955, Fax: +420 286 582 307
Search for more papers by this authorGeorge Anagnostopoulos
Institute of Chemical Engineering Sciences, Foundation for Research and Technology − Hellas (FORTH/ICE-HT), P.O. Box 1414, 265 04 Patras, Greece
Search for more papers by this authorElena del Corro
J. Heyrovsky Institute of Physical Chemistry of the AS CR v.v.i., Dolejskova 2155/3, CZ 182 23 Prague 8, Czech Republic
Search for more papers by this authorKarolina Drogowska
J. Heyrovsky Institute of Physical Chemistry of the AS CR v.v.i., Dolejskova 2155/3, CZ 182 23 Prague 8, Czech Republic
Search for more papers by this authorJan Pekarek
Faculty of Electrical Engineering and Communication, Centre of Sensors, Information and Communication Systems, Brno University of Technology, Technicka, 3058/10 CZ 616 00 Brno, Czech Republic
Search for more papers by this authorLadislav Kavan
J. Heyrovsky Institute of Physical Chemistry of the AS CR v.v.i., Dolejskova 2155/3, CZ 182 23 Prague 8, Czech Republic
Faculty of Science, Department of Inorganic Chemistry, Charles University in Prague, Albertov 6, CZ 128 43 Prague 2, Czech Republic
Search for more papers by this authorMartin Kalbac
J. Heyrovsky Institute of Physical Chemistry of the AS CR v.v.i., Dolejskova 2155/3, CZ 182 23 Prague 8, Czech Republic
Search for more papers by this authorJohn Parthenios
Institute of Chemical Engineering Sciences, Foundation for Research and Technology − Hellas (FORTH/ICE-HT), P.O. Box 1414, 265 04 Patras, Greece
Search for more papers by this authorKonstantinos Papagelis
Institute of Chemical Engineering Sciences, Foundation for Research and Technology − Hellas (FORTH/ICE-HT), P.O. Box 1414, 265 04 Patras, Greece
Search for more papers by this authorCostas Galiotis
Institute of Chemical Engineering Sciences, Foundation for Research and Technology − Hellas (FORTH/ICE-HT), P.O. Box 1414, 265 04 Patras, Greece
Department of Chemical Engineering, University of Patras, 26504 Patras, Greece
Search for more papers by this authorOtakar Frank
J. Heyrovsky Institute of Physical Chemistry of the AS CR v.v.i., Dolejskova 2155/3, CZ 182 23 Prague 8, Czech Republic
Search for more papers by this authorAbstract
Mechanical properties of graphene prepared by chemical vapour deposition (CVD) are not easily comparable to the properties of nearly perfect graphene prepared by mechanical cleavage. In this work, we attempt to investigate the mechanical performance of CVD graphene (simply supported or embedded in polymer matrix), transferred by two different techniques, under uniaxial loading with simultaneous in situ monitoring by Raman microspectroscopy. The level of charge transfer doping and strain is assessed using the vector analysis modified for uniaxial strain. The strain distribution across the samples varies significantly, owing to the growth and transfer process, which induces wrinkles and faults in the CVD graphene. In simply supported specimens, the stress transfer efficiency is generally very low and the changes in Raman spectra are dominated by variations in the charge transfer originating from the realignment of the domains on the substrate upon the application of strain. In contrast, samples covered with an additional polymer layer exhibit an improved stress transfer efficiency, and the alterations of charge doping levels are negligible. In fully embedded specimens, the variations in stress transfer efficiencies are caused by the size of the effective graphene domains defined by cracks, folds and/or wrinkles.
References
- 1 C. Galiotis, O. Frank, E. N. Koukaras, and D. Sfyris, Annu. Rev. Chem. Biomol. Eng. 6, 121 ( 2015).
- 2 Y. Shi, X. Dong, P. Chen, J. Wang, and L.-J. Li, Phys. Rev. B 79, 115402 ( 2009).
- 3 M. A. Bissett, M. Tsuji, and H. Ago, Phys. Chem. Chem. Phys. 16, 11124 ( 2014).
- 4 N. J. G. Couto, D. Costanzo, S. Engels, D.-K. Ki, K. Watanabe, T. Taniguchi, C. Stampfer, F. Guinea, and A. F. Morpurgo, Phys. Rev. X 4, 041019 ( 2014).
- 5 A. C. Ferrari and D. M. Basko, Nature Nanotechnol. 8, 235 ( 2013).
- 6 L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rep. 473, 51 ( 2009).
- 7 J. E. Lee, G. Ahn, J. Shim, Y. S. Lee, and S. Ryu, Nature Commun. 3, 1024 ( 2012).
- 8 O. Frank, J. Vejpravova, V. Holy, L. Kavan, and M. Kalbac, Carbon 68, 440 ( 2014).
- 9 F. Fromm, P. Wehrfritz, M. Hundhausen, and T. Seyller, New J. Phys. 15, 113006 ( 2013).
- 10 T. G. A. Verhagen, K. Drogowska, M. Kalbac, and J. Vejpravova, Phys. Rev. B 92, 125437 ( 2015).
- 11 J. Vejpravova, B. Pacakova, J. Endres, A. Mantlikova, T. Verhagen, V. Vales, O. Frank, and M. Kalbac, Sci. Rep. 5, 15061 ( 2015).
- 12 E. del Corro, L. Kavan, M. Kalbac, and O. Frank, J. Phys. Chem. C 119, 25651 ( 2015).
- 13 F. Tuinstra and J. L. Koenig, J. Chem. Phys. 53, 1126 ( 1970).
- 14 A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, Nature Nanotechnol. 3, 210 ( 2008).
- 15 O. Frank, M. S. Dresselhaus, and M. Kalbac, Acc. Chem. Res. 48, 111 ( 2015).
- 16 R. J. Young, I. A. Kinloch, L. Gong, and K. S. Novoselov, Compos. Sci. Technol. 72, 1459 ( 2012).
- 17 M. Lazzeri and F. Mauri, Phys. Rev. Lett. 97, 266407 ( 2006).
- 18 C. Androulidakis, E. N. Koukaras, J. Parthenios, G. Kalosakas, K. Papagelis, and C. Galiotis, Sci. Rep. 5, 18219 ( 2015).
- 19 O. Frank, G. Tsoukleri, J. Parthenios, K. Papagelis, I. Riaz, R. Jalil, K. S. Novoselov, and C. Galiotis, ACS Nano 4, 3131 ( 2010).
- 20 T. M. G. Mohiuddin, A. Lombardo, R. R. Nair, A. Bonetti, G. Savini, R. Jalil, N. Bonini, D. M. Basko, C. Galiotis, N. Marzari, K. S. Novoselov, A. K. Geim, and A. C. Ferrari, Phys. Rev. B 79, 205433 ( 2009).
- 21 I. Polyzos, M. Bianchi, L. Rizzi, E. N. Koukaras, J. Parthenios, K. Papagelis, R. Sordan, and C. Galiotis, Nanoscale 7, 13033 ( 2015).
- 22 P. Venezuela, M. Lazzeri, and F. Mauri, Phys. Rev. B 84, 035433 ( 2011).
- 23 J. Maultzsch, S. Reich, and C. Thomsen, Phys. Rev. B 70, 155403 ( 2004).
- 24 S. Berciaud, X. Li, H. Htoon, L. E. Brus, S. K. Doorn, and T. F. Heinz, Nano Lett. 13, 3517 ( 2013).
- 25 O. Frank, M. Mohr, J. Maultzsch, C. Thomsen, I. Riaz, R. Jalil, K. S. Novoselov, G. Tsoukleri, J. Parthenios, K. Papagelis, L. Kavan, and C. Galiotis, ACS Nano 5, 2231 ( 2011).
- 26 M. Huang, H. Yan, T. F. Heinz, and J. Hone, Nano Lett. 10, 4074 ( 2010).
- 27 D. Yoon, Y.-W. Son, and H. Cheong, Phys. Rev. Lett. 106, 155502 ( 2011).
- 28 R. Narula, N. Bonini, N. Marzari, and S. Reich, Phys. Rev. B 85, 115451 ( 2012).
- 29 V. N. Popov and P. Lambin, Carbon 54, 86 ( 2013).
- 30 K. Filintoglou, N. Papadopoulos, J. Arvanitidis, D. Christofilos, O. Frank, M. Kalbac, J. Parthenios, G. Kalosakas, C. Galiotis, and K. Papagelis, Phys. Rev. B 88, 045418 ( 2013).
- 31 J. Zabel, R. R. Nair, A. Ott, T. Georgiou, A. K. Geim, K. S. Novoselov, and C. Casiraghi, Nano Lett. 12, 617 ( 2012).
- 32 M. Kalbac, A. Reina-Cecco, H. Farhat, J. Kong, L. Kavan, and M. S. Dresselhaus, ACS Nano 4, 6055 ( 2010).
- 33 D. M. Basko, S. Piscanec, and A. C. Ferrari, Phys. Rev. B 80, 165413 ( 2009).
- 34 C. Androulidakis, E. N. Koukaras, O. Frank, G. Tsoukleri, D. Sfyris, J. Parthenios, N. Pugno, K. Papagelis, K. S. Novoselov, and C. Galiotis, Sci. Rep. 4, 5271 ( 2014).
- 35 L. Gong, I. A. Kinloch, R. J. Young, I. Riaz, R. Jalil, and K. S. Novoselov, Adv. Mater. 22, 2694 ( 2010).
- 36 G. Anagnostopoulos, C. Androulidakis, E. N. Koukaras, G. Tsoukleri, I. Polyzos, J. Parthenios, K. Papagelis, and C. Galiotis, ACS Appl. Mater. Interfaces 7, 4216 ( 2015).
- 37 Z. Li, I. A. Kinloch, R. J. Young, K. S. Novoselov, G. Anagnostopoulos, J. Parthenios, C. Galiotis, K. Papagelis, C.-Y. Lu, and L. Britnell, ACS Nano 9, 3917 ( 2015).
- 38 S. Jegal, Y. Hao, D. Yoon, R. S. Ruoff, H. Yun, S. W. Lee, and H. Cheong, Chem. Phys. Lett. 568–569, 146 ( 2013).
- 39 J. Ek-Weis, S. Costa, O. Frank, and M. Kalbac, J. Phys. Chem. Lett. 5, 549 ( 2014).
- 40 J. Song, F.-Y. Kam, R.-Q. Png, W.-L. Seah, J.-M. Zhuo, G.-K. Lim, P. K. H. Ho, and L.-L. Chua, Nature Nanotechnol. 8, 356 ( 2013).
- 41 A. P. A. Raju, A. Lewis, B. Derby, R. J. Young, I. A. Kinloch, R. Zan, and K. S. Novoselov, Adv. Funct. Mater. 24, 2865 ( 2014).
- 42 R. Jalilian, L. A. Jauregui, G. Lopez, J. Tian, C. Roecker, M. M. Yazdanpanah, R. W. Cohn, I. Jovanovic, and Y. P. Chen, Nanotechnology 22, 295705 ( 2011).
- 43 R. Beams, L. Gustavo Cancado, and L. Novotny, J. Phys.: Condens. Matter 27, 083002 ( 2015).
- 44 C. Neumann, S. Reichardt, P. Venezuela, M. Drogeler, L. Banszerus, M. Schmitz, K. Watanabe, T. Taniguchi, F. Mauri, B. Beschoten, S. V. Rotkin, and C. Stampfer, Nature Commun. 6, 8429 ( 2015).