Utilization of high pressure for synthesizing superconducting semiconductors: analysis of Ekimov's method
Corresponding Author
Koun Shirai
Nanoscience and Nanotechnology Center, ISIR, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
Phone: +81-66789-4302, Fax: +81-66789-8539Search for more papers by this authorHaruhiko Dekura
Nanoscience and Nanotechnology Center, ISIR, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
Search for more papers by this authorAkira Yanase
ISIR, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
Search for more papers by this authorCorresponding Author
Koun Shirai
Nanoscience and Nanotechnology Center, ISIR, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
Phone: +81-66789-4302, Fax: +81-66789-8539Search for more papers by this authorHaruhiko Dekura
Nanoscience and Nanotechnology Center, ISIR, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
Search for more papers by this authorAkira Yanase
ISIR, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
Search for more papers by this authorAbstract
Use of a high-pressure process is proposed for synthesizing highly doped semiconductors. Working on a real example in a recent experiment by Ekimov on B-doped diamond synthesis, a theoretical investigation has been made of an efficient doping method. The underlying principle is simple: stiffer materials are energetically favorable over softer ones under high pressure. Softer impurities are easily dissolved in stiff crystals. In Ekimov's method, the energy required for a B atom to transfer from boron carbide to diamond comes from the energy gain by converting graphite to diamond, in addition to the entropy effect of dissolving the B atom in diamond. On the basis of this analysis, a potential of more than 10 at% of doping, which would improve Tc, by high-pressure processes is suggested. (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
References
- [1] K. J. Chang, M. M. Dacorogna, M. L. Cohen, J. M. Mignot, G. Chouteau, and G. Martinez, Phys. Rev. Lett. 54, 2375 (1985).
- [2] M. I. Eremets, V. V. Struzhkin, H. Mao, and R. J. Hemley, Science 293, 272 (2001).
- [3] M. Kaneshige, K. Shimizu, H. Hyodo, and K. Kimura, in: 48th High-Pressure Conf. Jpn., Kurayoshi, Japan (Japan Society of High Pressure Science and Technology, Kyoto, 2007), 1C06.
- [4] D. N. Sanz, P. Loubeyre, and M. Mezouar, Phys. Rev. Lett. 89, 245501 (2002).
- [5] A recent study shows that α -boron keeps the original structure based on an icosahedron even at the superconducting transition pressure (in preparation).
- [6] E. A. Ekimov, V. A. Sidorov, E. D. Bauer, N. N. Mel'nik, N. J. Curro, J. D. Thompson, and S. M. Stishov, Nature 428, 542 (2004).
- [7] R. J. Zhang, S. T. Lee, and Y. W. Lam, Diamond Relat. Mater. 5, 1288 (1996).
- [8] E. Bustarret, E. Gheeraert, and K. Watanabe, Phys. Status Solidi A 199, 9 (2003).
- [9] E. A. Ekimov, V. A. Sidorov, N. N. Mel'nik, S. Gierlotka, and A. Presz, J. Mater. Sci. 39, 4957 (2004).
- [10] Y. Takano, M. Nagao, I. Sakaguchi, M. Tachiki, T. Hatano, K. Kobayashi, H. Umezawa, and H. Kawarada, Appl. Phys. Lett. 85, 2851 (2004).
- [11] Y. Takano, Sci. Technol. Adv. Mater. 7, S1 (2006).
- [12] E. Bustarret, C. Marcenat, P. Achatz, J. Kacmarcik, F. Lévy, A. Huxley, L. Ortéga, E. Bourgeois, X. Blase, D. Débarre, and J. Boulmer, Nature 444, 465 (2006).
- [13] Z. A. Ren, J. Kato, T. Muranaka, J. Akimitsu, M. Kriener, and Y. Maeno, J. Phys. Soc. Jpn. 76, 103710 (2007).
- [14] B. V. Spitsyn, L. L. Bouilov, and B. V. Derjaguin, J. Cryst. Growth 52, 219 (1981).
- [15] H. Dekura, K. Shirai, and H. Katayama-Yoshida, J. Phys.: Condens. Matter 19, 365241 (2007).
- [16] H. Dekura, K. Shirai, and H. Katayama-Yoshida, Physica B 401/402, 702 (2007).
- [17] K. Soga, A. Oguri, S. Araake, M. Terauchi, A. Fujiwara, and K. Kimura, J. Solid State Chem. 177, 498 (2004).
- [18] S. Gunji and H. Kamimura, Phys. Rev. B 54, 13665 (1996).
- [19] H. Akai and T. Oguchi, Int. Conf. Quantum Simulation and Design, Hiroshima, Japan, 3–6 Dec. 2006; J. Phys.: Condens. Matter 19(36), 360301 (2007).
- [20] M. Lannoo and J. Bourgoin, Point Defects in Semiconductors I (Springer, Berlin, 1981), Chap. 6.
- [21] F. D. Murnaghan, Proc. Natl. Acad. Sci. USA 30, 244 (1944).
- [22] A. Masago, K. Shirai, and H. Katayama-Yoshida, Phys. Rev. B 73, 104102 (2006).
- [23] L. Shao, J. Zhang, J. Chen, D. Tang, P. E. Thompson, S. Patel, Z. Wang, H. Chen, J. Liu, and W. K. Chu, Appl. Phys. Lett. 84, 3325 (2004).
- [24] A. Armigliato, D. Nobili, P. Ostoja, M. Servidori, and S. Solmi, in: Semiconductor Silicon 1977, edited by H. R. Hull and E. Sirtl (Electrochemical Society, Pennington, NJ, 1977), p. 638.
- [25] J. P. Goss and P. R. Briddon, Phys. Rev. B 73, 085204 (2006).
- [26] E. Bourgeois, E. Bustarret, P. Achatz, F. Omnès, and X. Blase, Phys. Rev. B 74, 094509 (2006).
- [27] T. Oguchi, Sci. Technol. Adv. Mater. 7, S67 (2006).
- [28] S. Saito, T. Maeda, and T. Miyake, Mater. Res. Soc. Symp. Proc. 956, J14-03 (2007).
- [29] R. N. Hall and J. H. Racette, J. Appl. Phys. 35, 379 (1964).
- [30] Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology, New Series III/17e (Springer, Berlin, 1983), p. 22.
- [31] F. P. Bundy, in: Solid State Physics Under Pressure: Recent Advances with Anvil Devices, edited by S. Minomura (KTK Scientific, Tokyo, 1985), p. 1.
- [32] Chemical Society of Japan, Handbook of Chemistry, 5th edn. (Maruzen, Tokyo, 2004).
- [33] CRC Handbook of Chemistry and Physics, 67th edn. (CRC Press, Boca Raton, FL, 1986).
- [34] H. J. McSkimin, P. Andreatch, Jr., and P. Glynn, J. Appl. Phys. 43, 985 (1972).
- [35] S. Fahy and S. G. Louie, Phys. Rev. B 36, 3373 (1987).
- [36] M. T. Yin and M. L. Cohen, Phys. Rev. B 29, 6996 (1984).
- [37] R. J. Nelmes, J. S. Loveday, R. M. Wilson, W. G. Marshall, J. M. Besson, S. Klotz, G. Hamel, T. L. Aselage, and S. Hull, Phys. Rev. Lett. 74, 2268 (1995).
- [38] M. H. Manghnani, Y. Wang, F. Li, P. Zimin, and W. Rafaniello, in: Proc. Int. Conf. High Pressure Science and Technology (AIRAPT-17), Hawaii, 1999, pp. 945–948.
- [39] H. Bilz and W. Kress, Phonon Dispersion Relations in Insulators (Springer, Berlin, 1979), p. 162.
- [40] W. B. Gauster and I. J. Fritz, J. Appl. Phys. 45, 3309 (1974); J. Appl. Phys. 46, 3697 (1975).
- [41] K. T. Jacob, Solid State Commun. 94, 763 (1995).
- [42] J. F. Nye, Physical Properties of Crystals, in: Their Representation by Tensors and Matrices (Clarendon, Oxford, 1957), p. 146.
- [43] J. C. Boettger, Phys. Rev. B 55, 11202 (1997).