Hybrid HF-DFT comparative study of SrZrO3 and SrTiO3(001) surface properties
Corresponding Author
R. A. Evarestov
Department of Quantum Chemistry, St. Petersburg State University, 26 Universitetskii Prospekt, Stary Petergof, 198504 St. Petersburg, Russia
Phone: +7 812 428 67 55, Fax: +7 812 428 69 39Search for more papers by this authorA. V. Bandura
Department of Quantum Chemistry, St. Petersburg State University, 26 Universitetskii Prospekt, Stary Petergof, 198504 St. Petersburg, Russia
Search for more papers by this authorV. E. Alexandrov
Department of Quantum Chemistry, St. Petersburg State University, 26 Universitetskii Prospekt, Stary Petergof, 198504 St. Petersburg, Russia
Search for more papers by this authorCorresponding Author
R. A. Evarestov
Department of Quantum Chemistry, St. Petersburg State University, 26 Universitetskii Prospekt, Stary Petergof, 198504 St. Petersburg, Russia
Phone: +7 812 428 67 55, Fax: +7 812 428 69 39Search for more papers by this authorA. V. Bandura
Department of Quantum Chemistry, St. Petersburg State University, 26 Universitetskii Prospekt, Stary Petergof, 198504 St. Petersburg, Russia
Search for more papers by this authorV. E. Alexandrov
Department of Quantum Chemistry, St. Petersburg State University, 26 Universitetskii Prospekt, Stary Petergof, 198504 St. Petersburg, Russia
Search for more papers by this authorAbstract
Hybrid HF-DFT LCAO simulations of SrZrO3 and SrTiO3(001) surface properties are performed in a single-slab model framework. The SrZrO3(001) surface was studied by an ab initio method for the first time. Three slab models with different surface terminations including up to 8 atomic planes were used for calculation of the various surface characteristics (surface energies, atomic charges, density of electronic states). The dependence of the results on the chosen model and on the kind of d -element is analyzed. The dissimilarity in the surface oxygen atom contributions to the total density of states of two crystals is attributed to the more ionic nature of Zr–O bonds compared to Ti–O bonds. It is found that in the case of SrZrO3 the electronic density is biased towards the SrO-terminated surface and this surface should be more basic in nature than the SrO surface of SrTiO3 crystal. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
References
- [1] J. F. Scott, Ferroelectric Memories, Advanced Microelectronics 3 (Springer, Berlin, 2000).
- [2] J. Fleig, Solid State Ion. 161, 279 (2003).
- [3] C. Noguera, Physics and Chemistry at Oxide Surface (Cambridge University Press, New York, 1996).
- [4] G. Charlton, S. Brennan, C. A. Muryn, R. McGrath, D. Norman, T. S. Turner, and G. Thornton, Surf. Sci. 457, L376 (2000).
- [5] Q. D. Jiang and J. Zegenhagen, Surf. Sci. 425, 343 (1999).
- [6] T. Nishimura, A. Ikeda, H. Namba, T. Morishita, and Y. Kido, Surf. Sci. 421, 273 (1999).
- [7] N. Erdman, K. R. Poeppelmeier, M. Asta, O. Warschkow, D. E. Ellis, and L. D. Marks, Nature 419, 55 (2002).
- [8] N. Bickel, G. Schmidt, K. Heinz, and K. Muller, Vacuum 41, 46 (1990).
- [9] T. Hikita, T. Hanada, M. Kudo, and M. Kawai, Surf. Sci. 287, 377 (1993).
- [10] N. V. Krainyukova and V. V. Butskii, Surf. Sci. 454, 628 (2000).
- [11] A. Ikeda, T. Nishimura, T. Morishita, and Y. Kido, Surf. Sci. 433–435, 520 (1999).
- [12] J. Padilla and D. Vanderbilt, Surf. Sci. 418, 64 (1998).
- [13] K. A. Müller, Helv. Phys. Acta 31, 173 (1958).
- [14] S. Piskunov, E. A. Kotomin, E. Heifets, J. Maier, R. I. Eglitis, and G. Borstel, Surf. Sci. 575, 75 (2005).
- [15] E. Heifets, R. I. Eglitis, E. A. Kotomin, J. Maier, and G. Borstel, Phys. Rev. B 64, 235417 (2001).
- [16] A. Asthagiri and D. S. Sholl, J. Chem. Phys. 116, 9914 (2002).
- [17] A. Asthagiri and D. S. Sholl, Phys. Rev. B 73, 125432 (2006).
- [18] S. Kimura, J. Yamauchi, M. Tsukada, and S. Watanabe, Phys. Rev. B 51, 11049 (1995).
- [19] Z. Q. Li, J. L. Zhu, C. Q. Wu, Z. Tang, and Y. Kawazoe, Phys. Rev. B 58, 8075 (1998).
- [20] T. Ochs, S. Kostlmeier, and C. Elsasser, Integr. Ferroelectr. 32, 959 (2001).
- [21] E. Heifets, R. I. Eglitis, E. A. Kotomin, J. Maier, and G. Borstel, Surf. Sci. 513, 211 (2002).
- [22] R. Bader, Atoms in Molecules: A Quantum Theory (Oxford University Press, New York, 1990).
- [23] A. D. Becke, J. Chem. Phys. 98, 5648 (1993).
- [24] J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).
- [25] C. Lee, R. G. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).
- [26] N. M. Harrison, X.-G. Wang, J. Muscat, and M. Scheffler, Faraday Discuss. 114, 305 (1999).
- [27] R. A. Evarestov, A. V. Bandura, V. E. Alexandrov, and E. A. Kotomin, phys. stat. sol. (b) 242(2), R11–R13 (2005).
- [28] R. A. Evarestov, I. I. Tupitsyn, A. V. Bandura, and V. E. Alexandrov, Int. J. Quant. Chem. 106, 2191 (2006).
- [29] F. Corà, M. Alfredsson, G. Mallia, D. S. Middlemiss, W. C. Mackrodt, R. Dovesi, and R. Orlando, Struct. Bond. 113, 171 (2004). Review paper is online: http://www.crystal.unito.it/tutojan2004/tutorials/index.html
- [30] V. R. Saunders, R. Dovesi, C. Roetti, R. Orlando, C. M. Zicovich-Wilson, N. M. Harrison, K. Doll, B. Civalleri, I. J. Bush, Ph. D'Arco, and M. Llunell, Crystal 2003 User's Manual (University of Turin, 2003).
- [31] P. J. Hay and W. R. Wadt, J. Chem. Phys. 82, 270 (1985).
- [32] R. Dovesi et al., Crystal Atomic Functions Basis Sets, Theoretical Chemistry Group, University of Torino, URL: http://www.crystal.unito.it/Basis_Sets/ptable.html, updated 3 February 2004.
- [33] S. Piskunov, E. Heifets, R. I. Eglitis, and G. Borstel, Comput. Mater. Sci. 29, 165 (2004).
- [34] H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
- [35] B. J. Kennedy, C. J. Howard, and B. C. Chakoumakos, Phys. Rev. B 59, 4023 (1999).
- [36] Yu. A. Abramov, V. G. Tsirelson, V. E. Zavodnik, S. A. Ivanov, and I. D. Brown, Acta Crystallogr. B 51, 942 (1995).
- [37] D. de Ligny and P. Richet, Phys. Rev. B 53(6), 3013 (1996).
- [38] Y. S. Lee, J. S. Lee, T. W. Noh, D. Y. Byun, K. S. Yoo, K. Yamaura, and E. Takayama Muromachi, Phys. Rev. B 67, 113101 (2003).
- [39] K. van Benthem, C. Elsasser, and R. H. French, J. Appl. Phys. 90, 6156 (2001).