Interatomic potential and elastic constants of rare-gas crystals under pressure
E. V. Zarochentsev
Donetsk A. A. Galkin Physics and Technology Institute, National Academy of Sciences of Ukraine, 83114 Donetsk, Ukraine
Search for more papers by this authorV. N. Varyukhin
Donetsk A. A. Galkin Physics and Technology Institute, National Academy of Sciences of Ukraine, 83114 Donetsk, Ukraine
Search for more papers by this authorVal. V. Chabanenko
Donetsk A. A. Galkin Physics and Technology Institute, National Academy of Sciences of Ukraine, 83114 Donetsk, Ukraine
Search for more papers by this authorE. E. Horbenko
Luhansk Taras Shevchenko National Pedagogical University, Oboronna str. 2, 91011 Luhansk, Ukraine
Search for more papers by this authorE. V. Zarochentsev
Donetsk A. A. Galkin Physics and Technology Institute, National Academy of Sciences of Ukraine, 83114 Donetsk, Ukraine
Search for more papers by this authorV. N. Varyukhin
Donetsk A. A. Galkin Physics and Technology Institute, National Academy of Sciences of Ukraine, 83114 Donetsk, Ukraine
Search for more papers by this authorVal. V. Chabanenko
Donetsk A. A. Galkin Physics and Technology Institute, National Academy of Sciences of Ukraine, 83114 Donetsk, Ukraine
Search for more papers by this authorE. E. Horbenko
Luhansk Taras Shevchenko National Pedagogical University, Oboronna str. 2, 91011 Luhansk, Ukraine
Search for more papers by this authorAbstract
In previous papers, the authors have ab initio constructed a nonempirical pair interatomic potential of rare-gas crystals. It was constructed for the case of high pressures (strong compression). The equations of state are solved and the elastic constants responsible for the propagation of sound in strongly compressed crystals of rare gases are calculated in the next-nearest-neighbor approximation using the interatomic potential proposed by the authors. The results of calculations are in satisfactory agreement with the experimental data. The shear modulus ℬ︁12 is described somewhat less well. The last experiment data show that Cauchy relation is satisfied in krypton consequently the interatomic interaction in the rare-gas crystals has a central character. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
References
- [1] E. V. Zarochentsev, S. M. Orel, and V. N. Varyukhin, phys. stat. sol. (a) 52, 455 (1979).
- [2] E. V. Zarochentsev, S. M. Orel, and V. N. Varyukhin, phys. stat. sol. (a) 53, 75 (1979).
- [3] E. V. Zarochentsev and S. M. Orel, phys. stat. sol. (a) 57, 137 (1980).
- [4] E. V. Zarochentsev, S. M. Orel, and A. Yu. Yakovets, phys. stat. sol. (a) 94, 515 (1986).
- [5] E. V. Zarochentsev, S. M. Orel, and I. V. Kochergin, phys. stat. sol. (a) 94, 105 (1986).
- [6] E. V. Zarochentsev, S. M. Orel, and Yu. V. Stepanchuk, phys. stat. sol. (a) 116, 295 (1989).
- [7] V. G. Bar'yakhtar, E. V. Zarochentsev, and E. P. Troitskaya, Theory of Adiabatic Potential and Atomic Properties of Simple Metals (Gordon & Breach, London, 1999).
- [8] R. J. Hemley and H.-K. Ashcroft, Phys. Today 51, 26 (1998).
- [9] R. J. Hemley and H.-K. Mao, Encycl. Appl. Phys. 18, 555 (1997).
- [10] R. Jeanloz, Annu, Rev. Phys. Chem. 40, 237 (1989).
- [11] R. J. Hemley and H.-K. Mao, J. Phys.: Condens. Matter 10, 49 (1998).
- [12] R. J. Hemley and H.-K. Mao, J. Low Temp. Phys. 122, 3 (2001).
- [13] D. Acocella, G. K. Horton, and E. R. Cowley, Phys. Rev. B 61, 8753 (2000).
- [14] K. Rosciszewski, B. Paulus, P. Fulde, and H. Stoll, Phys. Rev. B 60, 7905 (1999).
- [15] M. I. Eremets, E. A. Gregoryanz, V. V. Struzhkin, Mao Ho-Kwang, R. J. Hemley, N. Muldess, and N. M. Zimmerman, Phys. Rev. Lett. 85, 13 (2000).
- [16] S. Klotz, Z. Kristall. 216, 8 (2001).
- [17] F. Occelli, M. Krisch, P. Loubeyre, F. Sette, R. Le Toullec, C. Masciovecchio, and J.-P. Rueff, Phys. Rev. B 63, 224306 (2001).
- [18] M. Krisch, J. Raman Spectrosc. 34, (2003).
- [19] T. Ruf, Appl. Phys. A 76, 1 (2003).
- [20] J. S. Tse, V. P. Shpakov, and V. R. Belosludov, Phys. Rev. B 58, 5 (1998).
- [21] S. Baroni, S. De Geroncoli, A. D. Corso, and P. Giannozzi, Rev. Mod. Phys. 73, 515 (2001).
- [22] V. V. Kechin, A. B. Belonoshko, R. Ahuja, and B. Johansson, Phys. Rev. Lett. 89, 11 (2002).
- [23] Y. Mita, Y. Sakai, M. Kobayashi, S. Endo, and S. Mochizuki, phys. stat. sol. (a) 189(3) 935 (2002).
- [24] I. V. Abarenkov and I. M. Antonova, in: Quantum Mechanical Cluster Calculations in Solid State Studies, Vol. 5 (World Scientific Publ. Co., Singapore, 1991), No. 2–3, pp. 63–78.
- [25] F. Birch, J. Geophys. Res. 57, 227 (1952).
- [26] R. E. Cohen, O. Gulseren, and R. J. Hemley, cond-mat/9905389.
- [27] P. Vinet, J. H. Rose, J. Ferrante, and L. R. Smidth, J. Phys.: Condens. Matter 1, 1941 (1989).
- [28] Z. H. Fang, Phys. Rev. B 58, 20 (1998).
- [29] F. D. Mumaghan, Finite Deformation of an Elastic Solid (Wiley, New York, 1951).
- [30] M. Kumar, Physica B 212, 391 (1995).
- [31] Yu. V. Eremeychenkova, E. V. Zarochentsev, and E. P. Troitskaya, Theor. Math. Phys. 106/3, 408 (1996).
- [32] I. V. Abarenkov and I. M. Antonova, phys. stat. sol. (b) 38, 2 (1970).
- [33] E. V. Zarochentsev and E. P. Troitskaya, Fiz. Tverd. Tela 43(7), 1292 (2001) [Phys. Solid State 43(7), 1345 (2001)].
- [34] E. V. Zarochentsev, E. P. Troitskaya, and Val. V. Chabanenko, Fiz. Tverd. Tela 46(2), 245 (2004); Phys. Solid State 46(2), 249 (2004).
- [35] T. Tsuchiya and K. Kawamura, J. Chem. Phys. 117, 12, 5859 (2002).
- [36] K. Brugger, Phys. Rev. A113, 6 (1964).
- [37] D. Wallace, Solid State Phys. 25, 301 (1970).
- [38] K. Fuchs, Proc. Roy. Soc. A 153, 622 (1936).
- [39] F. Birch, Phys. Rev. 71, 809 (1974).
- [40] E. V. Zarochentsev and E. P. Troitskaya, Fiz. Tverd. Tela 44(7), 1309 (2002); Phys. Solid State 44, 1370 (2002).
- [41] F. Clementi and C. Roetti, At. Data Nucl. Data Tables 14(3), 177 (1974).
- [42] H. Shimizu, H. Imaeda, T. Kume, and S. Sasaki, Phys. Rev. B 71, 014108 (2005).
- [43] H. Shimizu, H. Tashiro, T. Kume, and S. Sasaki, Phys. Rev. Lett. 86(20), 4568 (2001).
- [44] M. Grimsditch, P. Loubeyre, and A. Polian, Phys. Rev. B 33(10), 7192 (1986).
- [45] A. Polian, J. V. Desson, M. Grimsditch, and W. A. Grosshans, Phys. Rev. B 39(2), 1332 (1989).
- [46] H. Shimizu, N. Saitoh, and S. Sasaki, Phys. Rev. B 57, 230 (1998).
- [47] M. S. Anderson and C. A. Swenson, J. Phys. Chem. Solids 36, 145 (1975).
- [48] A. P. Jephcoat, H. K. Mao, L. W. Finger, D. F. Lox, R. J. Hemley, C. S. Zha, Phys. Rev. Lett. 59(2), 2670 (1987).
- [49] K. F. Goettel, J. H. Eggert, J. F. Silvera, and W. C. Moss, Phys. Rev. Lett. 62(6), 665 (1989).
- [50] V. G. Vaks, E. V. Zarochentsev, S. P. Kravchuk, and V. S. Safronov, J. Phys. F 8(5), 725 (1978).
- [51] E. V. Zarochentsev, V. I. Orekhov, and E. P. Troitskaya, Fiz. Tverd. Tela 16(8), 2249 (1974); Sov. Phys. Solid State 16, 2249 (1974)].
- [52] M. Kumar, Physica B 311 (2002).
- [53] M. Kumar, Phys. Chem. Miner. 30, 556 (2003).