Recent Progress in Semitransparent Organic and Perovskite Solar Cells
Yiman Dong
Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorHuaizhi Gao
Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorRunnan Yu
Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorYongshuai Gong
Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorZongwen Ma
Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorCorresponding Author
Zhan'ao Tan
Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorYiman Dong
Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorHuaizhi Gao
Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorRunnan Yu
Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorYongshuai Gong
Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorZongwen Ma
Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorCorresponding Author
Zhan'ao Tan
Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorAbstract
Semitransparent organic and perovskite solar cells are considered promising photovoltaic (PV) devices that can be applied to power-generating windows and facades of modern buildings and have achieved great progress in the past few years. Different from silicon-based solar cells, the optical absorption of devices with organic and perovskite active layer materials can be easily tuned by modifying the chemical structure and adjusting the halide types or contents, respectively, to meet the demands of energy-generating windows. In this review, the development progress of semitransparent PV (STPV) in terms of the selection of active layer materials, top transparent electrodes (TTEs), and strategies of enhancing the performance of STPVs is introduced. Meanwhile, the challenges and outlooks for the future development of STPVs are discussed.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1C. Battaglia, A. Cuevas, S. De Wolf, Energy Environ. Sci. 2016, 9, 1552.
- 2X. T. Meng, C. Yu, X. D. Song, J. Iocozzia, J. F. Hong, M. Rager, H. L. Jin, S. Wang, L. L. Huang, J. S. Qiu, Z. Q. Lin, Angew. Chem., Int. Ed. 2018, 57, 4682.
- 3R. Wang, M. Mujahid, Y. Duan, Z. K. Wang, J. J. Xue, Y. Yang, Adv. Funct. Mater. 2019, 29, 25.
- 4a) Q. S. Liu, Y. F. Jiang, K. Jin, J. Q. Qin, J. G. Xu, W. T. Li, J. Xiong, J. F. Liu, Z. Xiao, K. Sun, S. F. Yang, X. T. Zhang, L. M. Ding, Sci. Bull. 2020, 65, 272; b) G. Kim, H. Min, K. S. Lee, D. Y. Lee, S. M. Yoon, S. I. Seok, Science 2020, 370, 108; c) J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat, A. Mishra, Y. Yang, M. A. Hope, F. T. Eickemeyer, M. Kim, Y. J. Yoon, I. W. Choi, B. P. Darwich, S. J. Choi, Y. Jo, J. H. Lee, B. Walker, S. M. Zakeeruddin, L. Emsley, U. Rothlisberger, A. Hagfeldt, D. S. Kim, M. Gratzel, J. Y. Kim, Nature 2021, 592, 381; d) J. J. Yoo, G. Seo, M. R. Chua, T. G. Park, Y. Lu, F. Rotermund, Y.-K. Kim, C. S. Moon, N. J. Jeon, J.-P. Correa-Baena, V. Bulovic, S. S. Shin, M. G. Bawendi, J. Seo, Nature 2021, 590, 587.
- 5a) Y. J. Cheng, S. H. Yang, C. S. Hsu, Chem. Rev. 2009, 109, 5868; b) L. Y. Lu, T. Y. Zheng, Q. H. Wu, A. M. Schneider, D. L. Zhao, L. P. Yu, Chem. Rev. 2015, 115, 12666; c) Y. S. Chen, X. J. Wan, G. K. Long, Acc. Chem. Res. 2013, 46, 2645; d) J. E. Coughlin, Z. B. Henson, G. C. Welch, G. C. Bazan, Acc. Chem. Res. 2014, 47, 257.
- 6P. K. Ng, N. Mithraratne, H. W. Kua, Energy Build. 2013, 66, 274.
- 7Y. W. Li, G. Y. Xu, C. H. Cui, Y. F. Li, Adv. Energy Mater. 2018, 8, 1701791.
- 8P. Romero-Gomez, R. Betancur, A. Martinez-Otero, X. Elias, M. Mariano, B. Romero, B. Arredondo, R. Vergaz, J. Martorell, Sol. Energy Mater. Sol. Cells 2015, 137, 44.
- 9a) X. Ma, Z. Xiao, Q. An, M. Zhang, Z. Hu, J. Wang, L. Ding, F. Zhang, J. Mater. Chem. A 2018, 6, 21485; b) L. Qiu, H. Peng, Y. Liu, B. Qiu, Z.-G. Zhang, Y. Li, Y. Zou, Org. Electron. 2017, 45, 42; c) M. Luo, C. Y. Zhao, J. Yuan, J. F. Hai, F. F. Cai, Y. B. Hu, H. J. Peng, Y. M. Bai, Z. A. Tan, Y. P. Zou, Mat. Chem. Front. 2019, 3, 2483; d) X. L. Shi, J. D. Chen, K. Gao, L. J. Zuo, Z. Y. Yao, F. Liu, J. X. Tang, A. K. Y. Jen, Adv. Energy Mater. 2018, 8, 8.
- 10a) Q. F. Xue, R. X. Xia, C. J. Brabec, H. L. Yip, Energy Environ. Sci. 2018, 11, 1688; b) K. S. Chen, J. F. Salinas, H. L. Yip, L. J. Huo, J. H. Hou, A. K. Y. Jen, Energy Environ. Sci. 2012, 5, 9551; c) Q. Tai, F. Yan, Adv. Mater. 2017, 29, 424.
- 11a) G. Fanchini, S. Miller, L. B. Parekh, M. Chhowalla, Nano Lett. 2008, 8, 2176; b) F. Nickel, A. Puetz, M. Reinhard, H. Do, C. Kayser, A. Colsmann, U. Lemmer, Org. Electron. 2010, 11, 535.
- 12M. B. Upama, M. Wright, N. K. Elumalai, M. A. Mahmud, D. Wang, K. H. Chan, C. Xu, F. Hague, A. Uddin, Current Appl. Phys. 2017, 17, 298.
- 13A. Colsmann, A. Puetz, A. Bauer, J. Hanisch, E. Ahlswede, U. Lemmer, Adv. Energy Mater. 2011, 1, 599.
- 14R. Betancur, P. Romero-Gomez, A. Martinez-Otero, X. Elias, M. Maymo, J. Martorell, Nat. Photonics 2013, 7, 995.
- 15P. Shen, G. X. Wang, B. N. Kang, W. B. Guo, L. Shen, ACS Appl. Mater. Interfaces 2018, 10, 6513.
- 16W. Wang, C. Yan, T.-K. Lau, J. Wang, K. Liu, Y. Fan, X. Lu, X. Zhan, Adv. Mater. 2017, 29.
- 17M. B. Upama, M. Wright, N. K. Elumalai, M. A. Mahmud, D. Wang, C. Xu, A. Uddin, Acs Photonics 2017, 4, 2327.
- 18Y. X. Li, J. D. Lin, X. Z. Che, Y. Qu, F. Liu, L. S. Liao, S. R. Forrest, J. Am. Chem. Soc. 2017, 139, 17114.
- 19W. Su, Q. Fan, X. Guo, J. Wu, M. Zhang, Y. Li, Phys. Chem. Chem. Phys. 2019, 21, 10660.
- 20H. Zhang, H. Yao, J. Hou, J. Zhu, J. Zhang, W. Li, R. Yu, B. Gao, S. Zhang, J. Hou, Adv. Mater. 2018, 30.
- 21T. F. Li, S. X. Dai, Z. F. Ke, L. X. Yang, J. Y. Wang, C. Q. Yan, W. Ma, X. W. Zhan, Adv. Mater. 2018, 30, 7.
- 22Y. Cui, C. Y. Yang, H. F. Yao, J. Zhu, Y. M. Wang, G. X. Jia, F. Gao, J. H. Hou, Adv. Mater. 2017, 29, 7.
- 23Y. M. Bai, C. Y. Zhao, X. H. Chen, S. Zhang, S. Q. Zhang, T. Hayat, A. Alsaedi, Z. A. Tan, J. H. Hou, Y. F. Li, J. Mater. Chem. A 2019, 7, 15887.
- 24S. Shafian, J. Song, Y. Kim, J. K. Hyun, K. Kim, ACS Appl. Mater. Interfaces 2019, 11, 18887.
- 25A. Walsh, J. Phys. Chem. C 2015, 119, 5755.
- 26T. Jesper Jacobsson, J.-P. Correa-Baena, M. Pazoki, M. Saliba, K. Schenk, M. Grätzel, A. Hagfeldt, Energy Environ. Sci. 2016, 9, 1706.
- 27L. Yuan, Z. Wang, R. Duan, P. Huang, K. Zhang, Q. Chen, N. K. Allam, Y. Zhou, B. Song, Y. Li, J. Mater. Chem. A 2018, 6, 19696.
- 28B. Santanu, F. D. Michael, Nano Energy 2016, 30, 542.
- 29L. Chao, S. Joseph, D. Nitesh, S. Mikhael, T. Laurene, T. Jayan, J. Mater. Chem. A 2016, 4, 11648.
- 30S. Emanuele, V. Vitantonio, V. Salvatore, D. Ioannis, M. Giovanni, M. Graziella, A. Gianluca, C. Silvia, R. Aurora, M. Antonino La, L. Andrea, A. Alessandra, J. Mater. Chem. A 2021, 9, 16456.
- 31K.-S. Lee, I. Kim, C. B. Yeon, J. W. Lim, S. J. Yun, G. E. Jabbour, Etri J. 2013, 35, 587.
- 32Z. Z. Wang, C. F. Zhang, D. Z. Chen, S. Tang, J. C. Zhang, L. Sun, T. Heng, Y. Hao, Int. J. Photoenergy 2014, 2014, 209206.
10.1155/2014/209206 Google Scholar
- 33Z. Hu, J. Wang, Z. Wang, W. Gao, Q. An, M. Zhang, X. Ma, J. Wang, J. Miao, C. Yang, F. Zhang, Nano Energy 2019, 55, 424.
- 34X. Li, H. Meng, F. Shen, D. Su, S. Huo, J. Shan, J. Huang, C. Zhan, Dyes Pigm. 2019, 166, 196.
- 35R. Xia, H. Gu, S. Liu, K. Zhang, H.-L. Yip, Y. Cao, Solar RRL. 2019, 3, 1800270.
- 36R.-C. Cristina, M. Olga, B. Rafael, L. Giulia, M. Cristina, J. Franklin, C. Luis, J. B. Henk, Energy Environ. Sci. 2014, 7, 2968.
- 37P. Shangzheng, L. Xueyi, D. Hang, C. Dazheng, Z. Weidong, C. Jingjing, L. Zhenhua, X. He, Z. Jincheng, Z. Chunfu, H. Yue, ACS Appl. Mater. Interfaces 2018, 10, 12731.
- 38J.-Y. Lee, S. T. Connor, Y. Cui, P. Peumans, Nano Lett. 2008, 8, 689.
- 39C.-H. Chung, T.-B. Song, B. Bob, R. Zhu, Y. Yang, Nano Res. 2012, 5, 805.
- 40C.-C. Chen, L. Dou, J. Gao, W.-H. Chang, G. Li, Y. Yang, Energy Environ. Sci. 2013, 6, 2714.
- 41J. Krantz, T. Stubhan, M. Richter, S. Spallek, I. Litzov, G. J. Matt, E. Spiecker, C. J. Brabec, Adv. Funct. Mater. 2013, 23, 1711.
- 42F. Guo, X. Zhu, K. Forberich, J. Krantz, T. Stubhan, M. Salinas, M. Halik, S. Spallek, B. Butz, E. Spiecker, T. Ameri, N. Li, P. Kubis, D. M. Guldi, G. J. Matt, C. J. Brabec, Adv. Energy Mater. 2013, 3, 1062.
- 43F. Guo, P. Kubis, T. Stubhan, N. Li, D. Baran, T. Przybilla, E. Spiecker, K. Forberich, C. J. Brabec, ACS Appl. Mater. Interfaces 2014, 6, 18251.
- 44Y.-J. Kang, D.-G. Kim, J.-K. Kim, W.-Y. Jin, J.-W. Kang, Org. Electron. 2014, 15, 2173.
- 45J. Min, C. Bronnbauer, Z.-G. Zhang, C. Cui, Y. N. Luponosov, I. Ata, P. Schweizer, T. Przybilla, F. Guo, T. Ameri, K. Forberich, E. Spiecker, P. Baeuerle, S. A. Ponomarenko, Y. Li, C. J. Brabec, Adv. Funct. Mater. 2016, 26, 4543.
- 46G. Fei, A. Hamed, H. Yi, P. Thomas, H. Mengyao, B. Carina, L. Stefan, S. Erdmann, F. Karen, J. B. Christoph, Nanoscale 2014, 7, 1642.
- 47C. K. Cho, W. J. Hwang, K. Eun, S. H. Choa, S. I. Na, H. K. Kim, Sol. Energy Mater. Sol. Cells 2011, 95, 3269.
- 48I. Borazan, A. C. Bedeloglu, A. Demir, Polym. Polym. Compos. 2020, 28, 66.
- 49J. Ouyang, Displays 2013, 34, 423.
- 50R. Po, C. Carbonera, A. Bernardi, F. Tinti, N. Camaioni, Sol. Energy Mater. Sol. Cells 2012, 100, 97.
- 51S. K. Hau, H.-L. Yip, J. Zou, A. K. Y. Jen, Org. Electron. 2009, 10, 1401.
- 52T. Ameri, G. Dennler, C. Waldauf, H. Azimi, A. Seemann, K. Forberich, J. Hauch, M. Scharber, K. Hingerl, C. J. Brabec, Adv. Funct. Mater. 2010, 20, 1592.
- 53Y. Kim, J. Lee, H. Kang, G. Kim, N. Kim, K. Lee, Sol. Energy Mater. Sol. Cells 2012, 98, 39.
- 54H. Park, J. H. Lee, S. Lee, S. Y. Jeong, J. W. Choi, C. L. Lee, J. H. Kim, K. Lee, ACS Appl. Mater. Interfaces 2020, 12, 2276.
- 55W. Wang, F. Qin, X. Y. Zhu, Y. Liu, X. S. Jiang, L. L. Sun, C. Xie, Y. H. Zhou, ACS Appl. Mater. Interfaces 2020, 12, 3800.
- 56D. Bryant, P. Greenwood, J. Troughton, M. Wijdekop, M. Carnie, M. Davies, K. Wojciechowski, H. J. Snaith, T. Watson, D. Worsley, Adv. Mater. 2014, 26, 7499.
- 57B. Lingling, L. Zonghao, Z. Meng, L. Wenhui, Z. Aili, C. Fensha, Z. Zhixin, Z. Yinhua, ACS Appl. Mater. Interfaces 2015, 7, 1776.
- 58M. He, J. Jung, F. Qiu, Z. Lin, J. Mater. Chem. 2012, 22, 24254.
- 59H. Park, P. R. Brown, V. Buloyic, J. Kong, Nano Lett. 2012, 12, 133.
- 60Z. K. Liu, J. H. Li, Z. H. Sun, G. A. Tai, S. P. Lau, F. Yan, Acs Nano 2012, 6, 810.
- 61Y.-Y. Lee, K.-H. Tu, C.-C. Yu, S.-S. Li, J.-Y. Hwang, C.-C. Lin, K.-H. Chen, L.-C. Chen, H.-L. Chen, C.-W. Chen, Acs Nano 2011, 5, 6564.
- 62Z. Liu, P. You, S. Liu, F. Yan, Acs Nano 2015, 9, 12026.
- 63Y. Peng, L. Zhike, T. Qidong, L. Shenghua, Y. Feng, Adv. Mater. 2015, 27, 3632.
- 64R. A. Hatton, A. J. Miller, S. R. P. Silva, J. Mater. Chem. 2008, 18, 1183.
- 65R. Jackson, B. Domercq, R. Jain, B. Kippelen, S. Graham, Adv. Funct. Mater. 2008, 18, 2548.
- 66Y. H. Kim, L. Mueller-Meskamp, A. A. Zakhidov, C. Sachse, J. Meiss, J. Bikova, A. Cook, A. A. Zakhidov, K. Leo, Sol. Energy Mater. Sol. Cells 2012, 96, 244.
- 67a) B. B. Parekh, G. Fanchini, G. Eda, M. Chhowalla, Applied Physics Letters 2007, 90; b) L. P. Yu, C. Shearer, J. Shapter, Chem. Rev. 2016, 116, 13413.
- 68I. Jeon, C. Delacou, A. Kaskela, E. I. Kauppinen, S. Maruyama, Y. Matsuo, Sci. Rep. 2016, 6.
- 69L. Zhen, A. K. Sneha, P. B. Pablo, S. Enzheng, C. Anyuan, F. Kunwu, K. B. Sudip, Z. Jun, X. Qihua, W. Lydia Helena, M. Nripan, G. M. Subodh, ACS Nano 2014, 7, 6797.
- 70Z. A. Tan, D. P. Qian, W. Q. Zhang, L. J. Li, Y. Q. Ding, Q. Xu, F. Z. Wang, Y. F. Li, J. Mater. Chem. A 2013, 1, 657.
- 71G. Teran-Escobar, J. Pampel, J. M. Caicedo, M. Lira-Cantu, Energy Environ. Sci. 2013, 6, 3088.
- 72Z. A. Tan, L. J. Li, C. H. Cui, Y. Q. Ding, Q. Xu, S. S. Li, D. P. Qian, Y. F. Li, J. Phy. Chem. C 2012, 116, 18626.
- 73M. F. Soh, M. F. M. Noh, N. A. Mohamed, J. Safaei, N. N. Rosh, E. L. Lim, C. C. Yap, M. A. M. Teridi, Mater. Lett. 2019, 253, 117.
- 74P. Jain, S. Singh, S. K. Pundir, J. Nanosci. Nanotechnol. 2020, 20, 3845.
- 75T. Winkler, H. Schmidt, H. Fluegge, F. Nikolayzik, I. Baumann, S. Schmale, T. Weimann, P. Hinze, H.-H. Johannes, T. Rabe, S. Hamwi, T. Riedl, W. Kowalsky, Org. Electron. 2011, 12, 1612.
- 76a) T. Dimopoulos, M. Bauch, R. A. Wibowo, N. Bansal, R. Hamid, M. Auer, M. Jaeger, E. J. W. List-Kratochvil, Mater. Sci. Eng. B 2015, 200, 84; b) K. Zhang, Z. Y. Hu, L. K. Huang, Z. Q. Zhao, H. C. Zhang, J. Zhang, Y. J. Zhu, J. Nanoelectron. Optoelectron. 2015, 10, 659.
- 77S. Fujii, K. Hashiba, T. Shimizu, Y. Nishioka, H. Kataura, J Photopolym. Sci. Tec. 2016, 29, 547.
- 78Z. Yin, J. Wei, S.-C. Chen, D. Cai, Y. Ma, M. Wang, Q. Zheng, J. Mater. Chem. A 2017, 5, 3888.
- 79X. Ren, X. Li, W. C. H. Choy, Nano Energy 2015, 17, 187.
- 80a) D. Baran, R. S. Ashraf, D. A. Hanifi, M. Abdelsamie, N. Gasparini, J. A. Rohr, S. Holliday, A. Wadsworth, S. Lockett, M. Neophytou, C. J. M. Emmott, J. Nelson, C. J. Brabec, A. Amassian, A. Salleo, T. Kirchartz, J. R. Durrant, I. McCulloch, Nat. Mater. 2017, 16, 363; b) H. Huang, X. J. Li, S. S. Chen, B. B. Qiu, J. Q. Du, L. Meng, Z. J. Zhang, C. Yang, Y. F. Li, J. Mater. Chem. A 2019, 7, 27423.
- 81Y. S. Chen, P. Ye, Z. G. Zhu, X. L. Wang, L. Yang, X. Z. Xu, X. X. Wu, T. Dong, H. Zhang, J. H. Hou, F. Liu, H. Huang, Adv. Mater. 2017, 29, 6.
- 82Q. S. An, F. J. Zhang, W. Gao, Q. Q. Sun, M. Zhang, C. L. Yang, J. Zhang, Nano Energy 2018, 45, 177.
- 83a) Y. Cui, H. F. Yao, C. Y. Yang, S. Q. Zhang, J. H. Hou, Acta. Polym. Sin. 2018, 2, 223; b) Z. Z. Shi, H. Liu, J. Y. Li, F. Z. Wang, Y. M. Bai, X. M. Bian, B. Zhang, A. Alsaedi, T. Hayat, Z. A. Tan, Sol. Energy Mater. Sol. Cells 2018, 180, 1.
- 84Y. Xie, L. Huo, B. Fan, H. Fu, Y. Cai, L. Zhang, Z. Li, Y. Wang, W. Ma, Y. Chen, Y. Sun, Adv. Funct. Mater. 2018, 28, 1800627.
- 85M. Nam, H. Y. Noh, J.-H. Kang, J. Cho, B. K. Min, J. W. Shim, D.-H. Ko, Nano Energy 2019, 58, 652.
- 86B. Dudem, J. W. Jung, J. S. Yu, J. Mater. Chem. A 2018, 6, 14769.
- 87C. Agustin-Saenz, J. A. Sanchez-Garcia, M. Machado, M. Brizuela, O. Zubillaga, A. Tercjak, Sol. Energy Mater. Sol. Cells 2018, 186, 154.
- 88Y. L. Wang, M. X. Chen, D. H. Li, Z. W. Huang, Y. C. Mao, W. J. Han, T. Wang, D. Liu, J. Mater. Chem. C 2019, 7, 14962.
- 89a) J. A. Frantz, J. D. Myers, R. Y. Bekele, L. E. Busse, J. S. Sanghera, Prog. Photovoltaics 2016, 24, 1427; b) P. Hiralal, C. Chien, N. N. Lal, W. Abeygunasekara, A. Kumar, H. Butt, H. Zhou, H. E. Unalan, J. J. Baumberg, G. A. J. Amaratunga, Nanoscale 2014, 6, 14555.
- 90a) D. G. Chen, Sol. Energy Mater. Sol. Cells 2001, 68, 313; b) M. C. Bautista, A. Morales, Sol. Energy Mater. Sol. Cells 2003, 80, 217.
- 91W. J. Yu, L. Shen, Y. B. Long, P. Shen, W. B. Guo, W. Y. Chen, S. P. Ruan, Org. Electron. 2014, 15, 470.
- 92a) C. Bronnbauer, N. Gasparini, C. J. Brabec, K. Forberich, Adv. Opt. Mater. 2016, 4, 1098; b) W. J. Yu, S. P. Ruan, Y. B. Long, L. Shen, W. B. Guo, W. Y. Chen, Sol. Energy Mater. Sol. Cells 2014, 127, 27.
- 93W. J. Yu, L. Shen, P. Shen, Y. B. Long, H. W. Sun, W. Y. Chen, S. P. Ruan, ACS Appl. Mater. Interfaces 2014, 6, 599.
- 94G. Xu, L. Shen, C. Cui, S. Wen, R. Xue, W. Chen, H. Chen, J. Zhang, H. Li, Y. Li, Y. Li, Adv. Funct. Mater. 2017, 27, 1605908.
- 95J. Zhang, G. Xu, F. Tao, G. Zeng, M. Zhang, Y. Yang, Y. Li, Y. Li, Adv. Mater. 2019, 31, 1807159.
- 96C. Bronnbauer, J. Hornich, N. Gasparini, F. Guo, B. Hartmeier, N. A. Luechinger, C. Pflaum, C. J. Brabec, K. Forberich, Adv. Opt. Mater. 2015, 3, 1424.
- 97Q. César Omar Ramírez, B. Carina, L. Ievgen, H. Yi, J. B. Christoph, F. Karen, ACS Nano 2016, 10, 5104.
- 98R. S. Gurney, D. G. Lidzey, T. Wang, Rep. Prog. Phys. 2019, 82, 37.
- 99R. F. Bailey-Salzman, B. P. Rand, S. R. Forrest, Appl. Phys. Lett. 2006, 88, 3.
- 100J. Y. Kim, S. Noh, D. Lee, C. Lee, J. Korean Phys. Soc. 2010, 57, 1852.
- 101J. Meiss, T. Menke, K. Leo, C. Uhrich, W. M. Gnehr, S. Sonntag, M. Pfeiffer, M. Riede, Appl. Phys. Lett. 2011, 99, 3.
- 102Z. Tang, Z. George, Z. F. Ma, J. Bergqvist, K. Tvingstedt, K. Vandewal, E. Wang, L. M. Andersson, M. R. Andersson, F. L. Zhang, O. Inganas, Adv. Energy Mater. 2012, 2, 1467.
- 103S. S. Chen, H. T. Yao, B. Hu, G. Y. Zhang, L. Arunagiri, L. K. Ma, J. C. Huang, J. Q. Zhang, Z. L. Zhu, F. J. Bai, W. Ma, H. Yan, Adv. Energy Mater. 2018, 8, 6.
- 104L. J. Zuo, X. L. Shi, W. F. Fu, A. K. Y. Jen, Adv. Mater. 2019, 31, 9.
- 105a) B. Chen, S.-W. Baek, Y. Hou, E. Aydin, M. De Bastiani, B. Scheffel, A. Proppe, Z. Huang, M. Wei, Y.-K. Wang, E.-H. Jung, T. G. Allen, E. Van Kerschaver, F. P. G. de Arquer, M. I. Saidaminov, S. Hoogland, S. De Wolf, E. H. Sargent, Nat. Commun. 2020, 11,, 1257; D. The, Y. Wu, H. Shen, J. Peng, X. Fu, D. Jacobs, E.-C. Wang, T. C. Kho, K. C. Fong, M. Stocks, E. Franklin, A. Blakers, N. Zin, K. McIntosh, W. Li, Y.-B. Cheng, T. P. White, K. Weber, K. Catchpole, Adv. Energy Mater. 2017, 7, 1700228.
- 106C. D. Bailie, M. G. Christoforo, J. P. Mailoa, A. R. Bowring, E. L. Unger, W. H. Nguyen, J. Burschka, N. Pellet, J. Z. Lee, M. Graetzel, R. Noufi, T. Buonassisi, A. Salleo, M. D. McGehee, Energy Environ. Sci. 2015, 8, 956.
- 107H. Shen, T. Duong, J. Peng, D. Jacobs, N. Wu, J. Gong, Y. Wu, S. K. Karuturi, X. Fu, K. Weber, X. Xiao, T. P. White, K. Catchpolea, Energy Environ. Sci. 2018, 11, 3.