Intersystem Crossing Rate in Thermally Activated Delayed Fluorescence Emitters
Corresponding Author
Takashi Kobayashi
Department of Physics and Electronics, Osaka Prefecture University, 1-1 Gakuencho, Nakaku, Sakai, Osaka, 599-8531 Japan
The Research Institute for Molecular Electronic Devices (RIMED), Osaka Prefecture University, 1-1 Gakuencho, Nakaku, Sakai, Osaka, 599-8531 Japan
Search for more papers by this authorDaisuke Kawate
Department of Physics and Electronics, Osaka Prefecture University, 1-1 Gakuencho, Nakaku, Sakai, Osaka, 599-8531 Japan
Search for more papers by this authorAkitsugu Niwa
Department of Physics and Electronics, Osaka Prefecture University, 1-1 Gakuencho, Nakaku, Sakai, Osaka, 599-8531 Japan
Search for more papers by this authorTakashi Nagase
Department of Physics and Electronics, Osaka Prefecture University, 1-1 Gakuencho, Nakaku, Sakai, Osaka, 599-8531 Japan
The Research Institute for Molecular Electronic Devices (RIMED), Osaka Prefecture University, 1-1 Gakuencho, Nakaku, Sakai, Osaka, 599-8531 Japan
Search for more papers by this authorKenichi Goushi
Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395 Japan
ERATO, Adachi Molecular Exciton Engineering Project, Japan Science and Technology Agency (JST), 744 Motooka, Nishi, Fukuoka, 819-0395 Japan
Search for more papers by this authorChihaya Adachi
Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395 Japan
ERATO, Adachi Molecular Exciton Engineering Project, Japan Science and Technology Agency (JST), 744 Motooka, Nishi, Fukuoka, 819-0395 Japan
Search for more papers by this authorCorresponding Author
Hiroyoshi Naito
Department of Physics and Electronics, Osaka Prefecture University, 1-1 Gakuencho, Nakaku, Sakai, Osaka, 599-8531 Japan
The Research Institute for Molecular Electronic Devices (RIMED), Osaka Prefecture University, 1-1 Gakuencho, Nakaku, Sakai, Osaka, 599-8531 Japan
Search for more papers by this authorCorresponding Author
Takashi Kobayashi
Department of Physics and Electronics, Osaka Prefecture University, 1-1 Gakuencho, Nakaku, Sakai, Osaka, 599-8531 Japan
The Research Institute for Molecular Electronic Devices (RIMED), Osaka Prefecture University, 1-1 Gakuencho, Nakaku, Sakai, Osaka, 599-8531 Japan
Search for more papers by this authorDaisuke Kawate
Department of Physics and Electronics, Osaka Prefecture University, 1-1 Gakuencho, Nakaku, Sakai, Osaka, 599-8531 Japan
Search for more papers by this authorAkitsugu Niwa
Department of Physics and Electronics, Osaka Prefecture University, 1-1 Gakuencho, Nakaku, Sakai, Osaka, 599-8531 Japan
Search for more papers by this authorTakashi Nagase
Department of Physics and Electronics, Osaka Prefecture University, 1-1 Gakuencho, Nakaku, Sakai, Osaka, 599-8531 Japan
The Research Institute for Molecular Electronic Devices (RIMED), Osaka Prefecture University, 1-1 Gakuencho, Nakaku, Sakai, Osaka, 599-8531 Japan
Search for more papers by this authorKenichi Goushi
Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395 Japan
ERATO, Adachi Molecular Exciton Engineering Project, Japan Science and Technology Agency (JST), 744 Motooka, Nishi, Fukuoka, 819-0395 Japan
Search for more papers by this authorChihaya Adachi
Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395 Japan
ERATO, Adachi Molecular Exciton Engineering Project, Japan Science and Technology Agency (JST), 744 Motooka, Nishi, Fukuoka, 819-0395 Japan
Search for more papers by this authorCorresponding Author
Hiroyoshi Naito
Department of Physics and Electronics, Osaka Prefecture University, 1-1 Gakuencho, Nakaku, Sakai, Osaka, 599-8531 Japan
The Research Institute for Molecular Electronic Devices (RIMED), Osaka Prefecture University, 1-1 Gakuencho, Nakaku, Sakai, Osaka, 599-8531 Japan
Search for more papers by this authorAbstract
For a better understanding of the exciton decay process in thermally activated delayed fluorescence (TADF) emitters, the intersystem crossing rate, kISC, is one of the important physical constants that have to be determined. Herein, a method to calculate the kISC value from photoluminescence (PL) measurements is reconsidered. The kISC value can be determined at very low temperatures where delayed fluorescence (DF) is completely suppressed, as well as around room temperature where triplet excitons mainly decay into the ground state by emitting DF. However, there is a temperature range where the kISC value cannot be determined accurately because the influences of nonradiative decay paths can be neither ignored nor corrected. For such a temperature range, an alternative approach, which utilizes the temperature dependence of an observed PL decay rate, is presented. In this way, kISC values from 300 to 10 K are determined for thin films of two TADF emitters, i.e., 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene and 1,2-bis(carbazol-9-yl)-4,5-dicyanobenzene, which are known as 4CzIPN and 2CzPN, respectively.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
pssa201900616-sup-0001-SuppData-S1.docx62.2 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature 2012, 492, 234.
- 2H. Kaji, H. Suzuki, T. Fukushima, K. Shizu, K. Suzuki, S. Kubo, T. Komino, H. Oiwa, F. Suzuki, A. Wakamiya, Y. Murata, C. Adachi, Nat. Commun. 2014, 6, 8476.
- 3Y. Tao, K. Yuan, T. Chen, P. Xu, H. Li, R. Chen, C. Zheng, L. Zhang, W. Huang, Adv. Mater. 2014, 26, 7931.
- 4M. Y. Wong, E. Zysman-Colman, Adv. Mater. 2017, 29, 1605444.
- 5Z. Yang, Z. Mao, Z. Xie, Y. Zhang, S. Liu, J. Zhao, J. Xu, Z. Chi, M. P. Aldred, Chem. Soc. Rev. 2017, 46, 915.
- 6Y. Liu, C. Li, Z. Ren, S. Yan, M. R. Bryce, Nat. Mater. Rev. 2018, 1, 18020.
- 7F. B. Dias, J. Santos, D. R. Graves, P. Data, R. S. Nobuyasu, M. A. Fox, A. S. Batsanov, T. Palmeira, M. N. Berberan-Santos, M. R. Bryce, A. P. Monkman, Adv. Sci. 2016, 3, 1600080.
- 8J. Givson, A. P. Monkman, T. J. Penfold, ChemPhysChem 2016, 17, 2956.
- 9M. K. Etherington, J. Gibson, H. F. Higginbotham, T. J. Penfold, A. P. Monkman, Nat. Commun. 2016, 7, 13680.
- 10T. Hosokai, H. Matsuzaki, H. Nakanotani, K. Tokumaru, T. Tsutsui, A. Furube, K. Nasu, H. Nomura, M. Yahiro, C. Adachi, Sci. Adv. 2017, 3, e1603282.
- 11H. Noda, H. Nakanotani, C. Adachi, Sci. Adv. 2018, 4, eaao6910.
- 12T. J. Penfold, E. Gindensperger, C. Daniel, C. M. Marian, Chem. Rev. 2018, 118, 6975.
- 13T. Ogiwara, Y. Wakikawa, T. Ikoma, J. Phys. Chem. A 2015, 119, 3415.
- 14K. Goushi, K. Yoshida, K. Sato, C. Adachi, Nat. Photonics 2012, 6, 253.
- 15K. Masui, H. Nakanotani, C. Adachi, Org. Electron. 2013, 14, 2721.
- 16M. A. Baldo, S. R. Forrest, Phys. Rev. B 2000, 62, 10958.
- 17R. Ishimatsu, Y. Kirino, C. Adachi, K. Nakano, T. Imato, Chem. Lett. 2016, 45, 1183.
- 18A. Niwa, K. Takaki, T. Kobayashi, T. Nagase, K. Goushi, C. Adachi, H. Naito, J. Imaging Soc. Jpn. 2016, 55, 143.
- 19T. Kobayashi, A. Niwa, S. Haseyama, K. Takaki, T. Nagase, K. Goushi, C. Adachi, H. Naito, J. Photon. Energy 2018, 8, 032104.
- 20T. Kobayashi, A. Niwa, K. Takaki, S. Haseyama, T. Nagase, K. Goushi, C. Adachi, H. Naito, Phys. Rev. Appl. 2017, 7, 034002.
- 21Q. Zhang, B. Li, S. Huang, H. Nomura, H. Tanaka, C. Adachi, Nat. Photonics 2014, 8, 326.
- 22G. Méhe, K. Goushi, W. J. Potscavage, C. Adachi, Org. Electron. 2014, 15, 2027.
- 23R. S. Nobuyasu, Z. Ren, G. C. Griffiths, A. S. Batsanov, P. Data, S. Yan, A. P. Monkman, M. R. Bryce, F. B. Dias, Adv. Opt. Mater. 2016, 4, 597.
- 24P. Data, P. Pander, M. Okazaki, Y. Takeda, S. Minakata, A. P. Monkman, Angew. Chem. Int. Ed. 2016, 55, 5739.
- 25S. Haseyama, A. Niwa, T. Kobayashi, T. Nagase, K. Goushi, C. Adachi, H. Naito, Nanoscale Res. Lett 2017, 12, 268.
- 26A. Niwa, T. Kobayashi, T. Nagase, K. Goushi, C. Adachi, H. Naito, Appl. Phys. Lett. 2014, 104, 213303.
- 27R. Ishimatsu, S. Matsunami, K. Shizu, C. Adachi, K. Nakano, T. Imato, J. Phys. Chem. A 2013, 117, 5607.
- 28W. T. Stacy, C. E. Swenberg, J. Chem. Phys. 1970, 52, 1962.
- 29H. Noda, X.-K. Chen, H. Nakanotani, T. Hosokai, M. Miyajima, N. Notsuka, Y. Kashima, J.-L. Brédas, C. Adachi, Nat. Mater. 2019, 18, 1084.
- 30Q. Peng, D. Fan, R. Duan, Y. Yi, Y. Niu, D. Wang, Z. Shuai, J. Phys. Chem. C 2017, 121, 13448.
- 31N. J. Turro, V. Ramamurthy, J. C. Scaiano, Principles of Molecular Photochemistry: An Introduction, University Science Books, Sausalito, CA, USA 2009.
- 32Z. E. X. Dance, S. M. Mickley, T. M. Wilson, A. B. Ricks, A. M. Scott, M. A. Ratner, M. R. Wasielewski, J. Phys. Chem. A 2008, 112, 4194.
- 33M. A. El-Sayed, J. Chem. Phys. 1963, 38, 2834.
- 34J. T. M. Kennis, S. Crosson, M. Gauden, I. H. M. van Stokkum, K. Moffat, R. van Grondelle, Biochemistry 2003, 42, 3385.
- 35S. Salzmann, J. Tatchen, C. M. Marian, J. Photochem. Photobiol. A 2008, 198, 221.
- 36A. Niwa, S. Haseyama, T. Kobayashi, T. Nagase, K. Goushi, C. Adachi, H. Naito, Appl. Phys. Lett. 2018, 113, 083301.