Flexible High Density Active Neural Implants Combining a Distributed Multiplexing Transceiver Architecture with Biocompatible Technology
Corresponding Author
Juan Pablo Marcoleta
Hearing 4 All Cluster of Excellence, Biomaterial Engineering, Hannover Medical School, 30625 Hannover, Germany
Search for more papers by this authorWaldo Nogueira
Department of Otolaryngology, Hannover Medical School and Cluster of Excellence “Hearing4all“, 30625 Hannover, Germany
Search for more papers by this authorUlrich Paul Froriep
Medical School Hannover, Translational Biomedical Engineering, Fraunhofer Institute for Toxicology and Experimental Medicine, 30625 Hannover, Germany
Search for more papers by this authorTheodor Doll
Medical School Hannover, Translational Biomedical Engineering, Fraunhofer Institute for Toxicology and Experimental Medicine, 30625 Hannover, Germany
Search for more papers by this authorCorresponding Author
Juan Pablo Marcoleta
Hearing 4 All Cluster of Excellence, Biomaterial Engineering, Hannover Medical School, 30625 Hannover, Germany
Search for more papers by this authorWaldo Nogueira
Department of Otolaryngology, Hannover Medical School and Cluster of Excellence “Hearing4all“, 30625 Hannover, Germany
Search for more papers by this authorUlrich Paul Froriep
Medical School Hannover, Translational Biomedical Engineering, Fraunhofer Institute for Toxicology and Experimental Medicine, 30625 Hannover, Germany
Search for more papers by this authorTheodor Doll
Medical School Hannover, Translational Biomedical Engineering, Fraunhofer Institute for Toxicology and Experimental Medicine, 30625 Hannover, Germany
Search for more papers by this authorAbstract
Precise localization of brain tissue causing severe neurological conditions requires subdural recording arrays with high electrode density and low mechanical stiffness compliant with the brain tissue. However, most arrays currently used − such as clinical ECoG grids − are rather stiff and limited in spatial resolution. To overcome these constrains a novel architecture is proposed using delocalized electronic (de)multiplexer grains. Here, their functional units are described in both hard- and software, and tested in simulations and experimentally. The results show that in case of a 100 × 100 mm ECoG array with lower mechanical stiffness, inter-electrode distances <1 mm can be achieved. Taking parasitic capacitances into account, a signal resolution of 100 μV is reached with an inter-channel timing resolution of 200 ns, which in our model corresponds to tissue localization as precise as 1.2 mm. For clinical application of envisaged 5000 electrodes, a preselection mechanism and routes for adoption of this technology toward cochlear implants and brain computer interfaces are presented.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1 T. Hinterberger, R. Veit, B. Wilhelm, N. Weiskopf, J.-J. Vatine, N. Birbaumer, Eur. J. Neurosci. 2005, 21, 3169.
- 2 H. Chiu, C. Chuang, Y. Chen, Y. Fan, Y. Kao, H. Ma, H. Chen, Y. Chang, S. Yeh, IEEE 14th International Conference on e-Health Networking, Applications and Services (Healthcom), 2012.
- 3 J. Liu, W. T. Newsome, J. Neurosci. 2006, 26, 7779.
- 4 G. Buzsáki, C. A. Anastassiou, C. Koch, Nature Reviews, Neuroscience 2012, 13.
- 5 Z. V. Freudenburg, N. F. Ramsey, M. Wronkiewicz, W. D. Smart, R. Pless, E. C. Leuthardt, Int. J. Mac. Learning Comp. 2011, 1, 3.
- 6 M. J. Fell, G. Flik, U. Dijkman, J. H. Folgering, K. W. Perry, B. J. Johnson, B. H. Westerink, K. A. Svensson, Neuropharmacology 2015, 99, 1.
- 7 W. Wang, A. D. Degenhart, J. L. Collinger, R. Vinjamuri, G. P. Sudre, P. D. Adelson, D. L. Holder, E. C. Leuthardt, D. W. Moran, M. L. Boninger, A. B. Schwartz, D. J. Crammond, E. C. Tyler-Kabara, D. J. Weber, Conf. Proc. IEEE Eng. Med. Biol. Soc. 2009, 586.
- 8 J. Hammer, J. Fischer, J. Ruescher, A. Schulze-Bonhage, A. Aertsen, T. Ball, Front. Neurosci. 2013, 7, 200.
- 9 S. Senay, L. F. Chaparro, M. Sun, R. Sclabassi, A. Akan, Turk. J. Elec. Engi. Comp. Sci. 2011, 19, 2.
- 10 J. Aceros, M. Yin, D.A. Borton, W.R. Patterson, A.V. Nurmikko, 33rd Annual International Conference of the IEEE EMBS Boston, Massachusetts USA, 2011, August 30 − September 3.
- 11 H. Bink, J.B. Wagenaar, J. Viventi, 6th Annual International IEEE EMBS Conference on Neural Engineering San Diego, California, 2013, 6 − 8 November.
- 12 J. Stieghorst, D. Majaura, H. Wevering, T. Doll, Applied Materials & interface, American Chemical Society, Washington, USA 2016.
- 13 J. Stieghorst, A. Bondarenkova, N. Burblies, P. Behrens, T. Doll, 3D silicone rubber interfaces for individually tailored implants, Springer, New York, USA 2015.
- 14 R. J. Rak, M. Kołodziej, A. Majkowski, Metrol. Meas. Syst. 2012, XIX, 427.
- 15 J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, T. M. Vaughan, Clin. Neurophysiol. 2002, 113, 767.
- 16 R. Kramme, K. P. Hoffmann, R. Pozos, Handbook of Medical Technology, Springer, Verlag Berlin Heidelberg 2011, 1, p. 1019.
- 17 G. Schalk, K. J. Miller, N. R. Anderson, J. A. Wilson, M. D. Smyth, J. G. Ojemann, D. W. Moran, J. R. Wolpaw, E. C. Leuthardt, J. Neural Eng. 2008, 5, 75.
- 18 S. Ryun, J. S. Kim, S. H. Lee, S. Jeong, S. P. Kim, C. K. Chung, BioMed Res. Int. 2014, 783203, 9.
- 19 J. E. Lisman, O. Jensen, Neuron 2013, 77, 1002.
- 20 K. Ohnishi, R. F. Weir, T. A. Kuiken, Expert Rev. Med. Devices 2007, 4, 43.
- 21 F. Rosenow, H. Lüders, Brain 2001, 121, 1683.
- 22 R. Enatsu, N. Mikuni, Neurol. Med. Chir. (Tokyo) 2016, 56, 221.
- 23 K. V. Nourski, M. A. Howard, Handbook of Clin. Neurol. 2015, 129, 225.
- 24 S. Ravat, V. Iyer, K. Panchal, D. Muzumdar, A. Kulkarni, Int. J. Surg. 2016, 36, 420.
- 25 T. Stieglitz, K. P. Koch, M. Schuettler, IEEE Eng. Med. Biol. Mag. 2005, 24, 58.
- 26 M. K. Tripp, C. Stampfer, D. C. Miller, T. Helbling, C. F. Herrmann, C. Hierold, K. Gall, S. M. George, V. M. Bright, Sens. Actuators A 2006, 130–139, 419.
- 27 M. Wittbrodt, C. R. Steele, S. Puria, Auditory Neurotol. 2006, 11, 104.
- 28 V. Shamanna, S. Das, Z. Çelik-Butler, D. P. Butler, K. L. Lawrence, J.Micromech. Micro Eng. 2006, 16, 1984.
- 29 H. Noh, K. Moon, A. Cannon, P. J. Hesketh, C. P. Wong, J. Micromech. Micro Eng. 2004, 14, 625.
- 30 D. Wright, B. Rajalingam, J. M. Karp, S. Selvarasah, Y. Ling, J. Yeh, R. Langer, M. R. Dokmeci, A. Khademhosseini, J. Biomed. Mater. Res. 2008, 85, 530.
- 31 X. Xie, L. Rieth, P. Tathireddy, F. Solzbacher, Procedia Eng. 2011, 25, 483.
- 32 M. Kuo, C. Alex, Polymer Data Handbook, Oxford University Press, Inc, New York, USA 1999.
- 33 M. E. Lopes, A study of the effects of ALD growth temperature on Al2O3 gate oxide by C-V andG-V measurements, UCLA Deptartment of Physics & Astronomy, Los Angeles, CA 9009.
- 34 J. Yota, H. Shen, R. Ramanathan, Characterization of atomic layer deposition HfO2, Al2O3, and plasmaenhanced chemical vapor deposition Si3N4 as metal-insulator-metal capacitor dielectric for GaAs HBT technology, American vacuum Society 2013.
- 35 Y. Liu, Y. Peng, Advanced Material Engineering: Proceedings of the 2015 International, World Scientific Publishing, Singapore 2015, 60.
- 36 P. Oliveira, The Elements, Pedia Press, Mainz, Germany 2001.
- 37
F. Yang,
J. C. M. Li,
Micro and Nano Mechanical Testing of Materials and Devices,
Springer Science,
New York. USA
2008.
10.1007/978-0-387-78701-5 Google Scholar
- 38 R. A. Serway, J. W. Jewett, Principles of Physics, 2nd edn., Saunders College Pub, Fort Worth, Texas; London 1998, p. 602.
- 39
F. Cardarelli,
Materials Handbook: A Concise Desktop Reference,
Springer,
london
2000.
10.1007/978-1-4471-3648-4 Google Scholar
- 40
K. Tegtmeier,
P. Aliuos,
T. Lenarz,
T. Doll,
Phys. Med.
2016,
1, 8.
10.1016/j.phmed.2016.04.001 Google Scholar
- 41 B. D. Ratner, A. S. Hoffman, F. J. Schoen, J. E. Lemons, Biomaterials Science: An Introduction to Materials in Medicine, Elseiver academic Press, San Diego, CA 2004.
- 42 C. Hassler, T. Boretius, T Stieglitz, J. Polym. Sci.: Part B: polymer physics 2011, 49, 18.
- 43 A. J. T. Teo, A. Mishra, I. Park, Y.-J. Kim, W.-T. Park, Y.-J. Yoon, ACS Biomater. Sci. Eng. 2016, 2, 454.
- 44
Y. C. Lim,
R. A. Moore,
IEEE Trans. El. Dev.
1968,
15, 173.
10.1109/T-ED.1968.16156 Google Scholar
- 45 S. Gevorgian, H. Berg, 31st Eurp. Microwave Conf., London 2001; 153–156.
- 46 Y.K. Song, W.R. Patterson, C.W. Bull, N.J. Hwang, A.P. Deangelis, C. Lay, J.L. McKay, A.V. Nurmikko, J.D. Donoghue, B.W. Connors, Proceedings of the 26th Annual International Conference of the IEEE, EMBS, San Francisco, CA, USA, 2004, September 1–5.
- 47 P. Li, L. Lei Yao, M. Je, Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO) 2013 IEEE MTT-S International, pp. 1–3, 2013.
- 48 K. Tegtmeier, F Borrmann, T. Doll, Procedia Eng. 2016, 168, 1168.
- 49E. Garcia, Compilador C CCS y Simulador Proteus para Microcontroladores PIC, Marcombo, 2009.
- 50 A. K. Singh, Electron. Instrumentation Eng. 2007, 14, 9635.
- 51
A. Mukherjee,
S. Ray,
A. Das,
Int. J. Electron. Electrical Eng.
2014,
2, 1.
10.12720/ijeee.2.1.1-7 Google Scholar
- 52C. Reas C., B. Fry, “processing: a programming Handbook for visual designers, second edition”, December 2014, The MIT Press. 720 pages.
- 53 N. Heidmann, N. Hellwege, T. Hohlein, T. Westphal, D. Peters-Drolshagen, P. Steffen, Design, Automation and Test in Europe Conference and Exhibition (DATE), 2014.
- 54 H. Ando, K. Takizawa, T. Yoshida, K. Matsushita, M. Hirata, T. Suzuki, IEEE Trans Biomed Circuits Syst. 2016, 10, 1068.
- 55 T. Doll, P. Aliuos, A. Büchner, V. Pikov, D. McCreery, J. Stieghorst, T. Lenarz, 13th International Conference on Cochlear Implants and other Implantable Auditory Technology”, 2014, Munich, June 18-21.
- 56 V. Giagka, C. Eder, N. Donaldson, A. Demosthenous, IEEE Trans. Biomed. Circ. Syst. 2015, 9, 3.
- 57 J. A. W. Van Dommelen, T. P. J. van der Sande, M. Hrapko, G. W. M. Peters, J. Mech. Behav. Biomed. Mater. 2010, 3, 158.
- 58 M. T. Prange, D. F. Meaney, S. S. Margulies, In: Proceedings of the 44th Stapp Car Crash Conference, 2000, 205.