Comparing the Movement Assessment Battery for Children with the Bruininks-Oseretsky Test of Motor Proficiency in adolescents with and without schizophrenia
Corresponding Author
Pernille Byrial
Department of Child and Adolescent Psychiatry, Aarhus University Hospital, Aarhus N, Denmark
Correspondence
Pernille Byrial, Department of Child and Adolescent Psychiatry, Aarhus University Hospital, Palle Juul-Jensen Boulevard 175, Aarhus N 8200, Denmark.
Email: [email protected]
Search for more papers by this authorLoa Clausen
Department of Child and Adolescent Psychiatry, Aarhus University Hospital, Aarhus N, Denmark
Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
Search for more papers by this authorLene Nyboe
Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
Department of Depression and Anxiety, Aarhus University Hospital, Aarhus N, Denmark
Search for more papers by this authorCorresponding Author
Pernille Byrial
Department of Child and Adolescent Psychiatry, Aarhus University Hospital, Aarhus N, Denmark
Correspondence
Pernille Byrial, Department of Child and Adolescent Psychiatry, Aarhus University Hospital, Palle Juul-Jensen Boulevard 175, Aarhus N 8200, Denmark.
Email: [email protected]
Search for more papers by this authorLoa Clausen
Department of Child and Adolescent Psychiatry, Aarhus University Hospital, Aarhus N, Denmark
Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
Search for more papers by this authorLene Nyboe
Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
Department of Depression and Anxiety, Aarhus University Hospital, Aarhus N, Denmark
Search for more papers by this authorAbstract
Background
As motor impairments have implications for health and functioning, they need to be addressed early, not only in childhood but also in adolescence, the period in which mental disorders as schizophrenia, typically develops. Further, the possible prognostic value of motor impairments in schizophrenia highlights the importance. The Bruininks-Oseretsky Test of Motor Proficiency (BOT-2) and the Movement Assessment Battery for Children (MABC-2) assess adolescent motor performance. However, MABC-2 is not valid past age 16 and has no sex-norms. Further, while the concurrent validity between the tests and their ability to distinguish between clinical and non-clinical groups has been established in children, however they have not been established in adolescence.
Purpose
To compare the ability of MABC-2 and BOT-2 to distinguish between adolescents with and without schizophrenia, to examine the concurrent validity between tests, to examine the agreement between tests in classifying adolescents “at risk” or scoring “below average” and to examine the influence of age and sex on MABC-2.
Method
Motor performance assessed by BOT-2 and MABC-2 was compared in 25 adolescents with schizophrenia (14–18) and age- and sex-matched controls using t-test, Cohen's D and false discovery rate's q-value. The associations between tests were assessed using Pearson's correlation and Lin's concordance correlation coefficient. The Kappa coefficient was used to assess the agreement between tests in classifying “risk/below average” and linear regression was adopted to assess the influence of age/sex on MABC-2.
Results
MABC-2 and BOT-2 significantly distinguished adolescents with schizophrenia from controls with large effect size. A strong association (p > 0.001) was found between the tests. The tests revealed moderate agreement in identifying “risk” or scoring “below average”. Only sex influenced MABC-2 scores.
Conclusion
MABC-2 and BOT-2 are both useful for assessing motor performance and distinguishing between adolescents with and without schizophrenia, although BOT-2 provides a more detailed picture of the challenges in adolescent with schizophrenia.
CONFLICT OF INTEREST
The authors declare that the present paper was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Open Research
DATA AVAILABILITY STATEMENT
Data and codes are not publicly available due to Danish legislation.
REFERENCES
- Apthorp, D., Bolbecker, A. R., Bartolomeo, L. A., O'Donnell, B. F., & Hetrick, W. P. (2019). Postural sway abnormalities in schizotypal personality disorder. Schizophrenia Bulletin, 45(3), 512–521. https://doi.org/10.1093/schbul/sby141
- Armitage, P., Berry, G., & Matthews, J. N. S. (2001). In A. Brown, F. Patisson, & O. K (Eds.), Statistical methods in medical research ( 4th ed.). Wiley-Blackwell.
- Barnett, L. M., Lai, S. K., Veldman, S. L. C., Hardy, L. L., Cliff, D. P., Morgan, P. J., Zask, A., Lubans, D. R., Shultz, S. P., Ridgers, N. D., Rush, E., Brown, H. L., & Okely, A. D. (2016). Correlates of gross motor competence in children and adolescents: A systematic review and meta-analysis. Sports Medicine, 46(11), 1663–1688. https://doi.org/10.1007/s40279-016-0495-z
- Benjamini, Y., Krieger, A. M., & D, Y. (2006). Adaptive linear step-up procedures that control the false discovery rate. Biometrika, 93(3), 491-507. https://doi.org/10.1093/biomet/93.3.491
- Beunen, G., & Malina, R. M. (1988). Growth and physical performance relative to the timing of the adolescent spurt. Exercise and Sport Sciences Reviews, 16, 503–540. https://doi.org/10.1249/00003677-198800160-00018. https://www.ncbi.nlm.nih.gov/pubmed/3292266
- Blair, S., Kampert, J. B., Kohl, H. W., 3rd, Barlow, C. E., Macera, C. A., Paffenbarger, R. S., Jr., & Lw, G. (1996). Influences of cardiorespiratory fitness and other precursors on cardiovascular disease and all-cause mortality in men and women. JAMA, 276(3), 205–210. https://doi.org/10.1001/jama.1996.03540030039029
- Blank, R., Smits-Engelsman, B., Polatajko, H., & Wilson, P. (2012). European Academy for Childhood Disability (EACD): Recommendations on the definition, diagnosis and intervention of developmental coordination disorder (long version). Developmental Medicine and Child Neurology, 54(1), 54–93. https://doi.org/10.1111/j.1469-8749.2011.04171.x
- Bruininks, R., & Bruininks, B. (2007). Bruininks-osertsky test of motor proficiency ( 2nd ed.). Pearson.
- Bruininks, R. H. (1978). Bruininks-oseretsky test of motor proficiency. American Guidance Service.
- Burton, B. K., Hjorthøj, C., Jepsen, J. R., Thorup, A., Nordentoft, M., & Plessen, K. J. (2016). Research review: Do motor deficits during development represent an endophenotype for schizophrenia? A meta analysis. Journal of Child Psychology and Psychiatry, 57(4), 446–456. https://doi.org/10.1111/jcpp.12479
- Butler, P. D., Silverstein, S. M., & Dakin, S. C. (2008). Visual perception and its impairment in schizophrenia. Biological Psychiatry, 64(1), 40–47. https://doi.org/10.1016/j.biopsych.2008.03.023
- Byrial, P., Nyboe, L., Thomsen, P. H., & Clausen, L. (2021). Motor impairments in early onset schizophrenia. Early Intervention in Psychiatry, 16(5), 481–491. https://doi.org/10.1111/eip.13185
- Cantell, M., Crawford, S. G., & Tish Doyle-Baker, P. K. (2008). Physical fitness and health indices in children, adolescents and adults with high or low motor competence. Human Movement Science, 27(2), 344–362. https://doi.org/10.1016/j.humov.2008.02.007
- Catts, V. S., Fung, S. J., Long, L. E., Joshi, D., Vercammen, A., Allen, K. M., Fillman, S. G., Rothmond, D. A., Sinclair, D., Tiwari, Y., Tsai, S.-Y., Weickert, T. W., & Shannon Weickert, C. (2013). Rethinking schizophrenia in the context of normal neurodevelopment. Frontiers in Cellular Neuroscience, 7, 60. https://doi.org/10.3389/fncel.2013.00060
- Cattuzzo, M. T., Dos Santos Henrique, R., Re, A. H., de Oliveira, I. S., Melo, B. M., de Sousa Moura, M., de Araujo, R. C., & Stodden, D. (2016). Motor competence and health related physical fitness in youth: A systematic review. Journal of Science and Medicine in Sport, 19(2), 123–129. https://doi.org/10.1016/j.jsams.2014.12.004
- Chang, B. P., & Lenzenweger, M. F. (2005). Somatosensory processing and schizophrenia liability: Proprioception, exteroceptive sensitivity, and graphesthesia performance in the biological relatives of schizophrenia patients. Journal of Abnormal Psychology, 114(1), 85–95. https://doi.org/10.1037/0021-843X.114.1.85
- Clark, J. E., & Whitall, J. (2011). Developmental coordination disorder: Function, participation, and assessment. Research in Developmental Disabilities, 32(4), 1243–1244. https://doi.org/10.1016/j.ridd.2011.02.017
- Dewey, D., Cantell, M., & Crawford, S. G. (2007). Motor and gestural performance in children with autism spectrum disorders, developmental coordination disorder, and/or attention deficit hyperactivity disorder. Journal of the International Neuropsychological Society, 13(2), 246–256. https://doi.org/10.1017/S1355617707070270
- Dewey, D., Kaplan, B. J., Crawford, S. G., & Wilson, B. N. (2002). Developmental coordination disorder: Associated problems in attention, learning, and psychosocial adjustment. Human Movement Science, 21(5–6), 905–918. https://doi.org/10.1016/s0167-9457(02)00163-x
- Downey, R., & Rapport, M. J. (2012). Motor activity in children with autism: A review of current literature. Pediatric Physical Therapy, 24(1), 2–20. https://doi.org/10.1097/PEP.0b013e31823db95f
- Emck, C., Bosscher, R., Beek, P., & Doreleijers, T. (2009). Gross motor performance and self-perceived motor competence in children with emotional, behavioural, and pervasive developmental disorders: A review. Developmental Medicine and Child Neurology, 51(7), 501–517. https://doi.org/10.1111/j.1469-8749.2009.03337.x
- Engel, A. C., Broderick, C. R., van Doorn, N., Hardy, L. L., & Parmenter, B. J. (2018). Exploring the relationship between fundamental motor skill interventions and physical activity levels in children: A systematic review and meta-analysis. Sports Medicine, 48(8), 1845–1857. https://doi.org/10.1007/s40279-018-0923-3
- Fliers, E., Vermeulen, S., Rijsdijk, F., Altink, M., Buschgens, C., Rommelse, N., Faraone, S., Sergeant, J., Buitelaar, J., & Franke, B. (2009). ADHD and poor motor performance from a family genetic perspective. Journal of the American Academy of Child & Adolescent Psychiatry, 48(1), 25–34. https://doi.org/10.1097/CHI.0b013e31818b1ca2
- Fournier, K. A., Hass, C. J., Naik, S. K., Lodha, N., & Cauraugh, J. H. (2010). Motor coordination in autism spectrum disorders: A synthesis and meta-analysis. Journal of Autism and Developmental Disorders, 40(10), 1227–1240. https://doi.org/10.1007/s10803-010-0981-3
- Goulardins, J. B., Marques, J. C., & De Oliveira, J. A. (2017). Attention deficit hyperactivity disorder and motor impairment. Perceptual & Motor Skills, 124(2), 425–440. https://doi.org/10.1177/0031512517690607
- Griffiths, A., Toovey, R., Morgan, P. E., & Spittle, A. J. (2018). Psychometric properties of gross motor assessment tools for children: A systematic review. BMJ Open, 8(10), e021734. https://doi.org/10.1136/bmjopen-2018-021734
- Hafner, H., Maurer, K., Loffler, W., Fatkenheuer, B., an der Heiden, W., Riecher-Rossler, A., Behrens, S., & Gattaz, W. F. (1994). The epidemiology of early schizophrenia. Influence of age and gender on onset and early course. British Journal of Psychiatry, Suppl(23), 29–38. https://doi.org/10.1192/s0007125000292714. https://www.ncbi.nlm.nih.gov/pubmed/8037899
- Hands, B., Licari, M., & Piek, J. (2015). A review of five tests to identify motor coordination difficulties in young adults. Research in Developmental Disabilities, 41–42, 40–51. https://doi.org/10.1016/j.ridd.2015.05.009
- Henderson, D. C., Vincenzi, B., Andrea, N. V., Ulloa, M., & Copeland, P. M. (2015). Pathophysiological mechanisms of increased cardiometabolic risk in people with schizophrenia and other severe mental illnesses. The Lancet Psychiatry, 2(5), 452–464. https://doi.org/10.1016/S2215-0366(15)00115-7
- Henderson, S. E., & Sugden, D. A. (1992). Movement assessment battery for children. The Psychological Corporation.
- Henderson, S. E., & Sugden, D. A. (2007). Movement assesment battery for children ( 2nd ed.). Pearson.
- Hirjak, D., Meyer-Lindenberg, A., Kubera, K., Thomann, P., & Wolf, R. (2018). Motor dysfunction as research domain in the period preceding manifest schizophrenia: A systematic review. Neuroscience & Biobehavioral Reviews, 87, 87–105. https://doi.org/10.1016/j.neubiorev.2018.01.011
- Kirby, A., Williams, N., Thomas, M., & Hill, E. L. (2013). Self-reported mood, general health, wellbeing and employment status in adults with suspected DCD. Research in Developmental Disabilities, 34(4), 1357–1364. https://doi.org/10.1016/j.ridd.2013.01.003
- Knowles, E. E., David, A. S., & Reichenberg, A. (2010). Processing speed deficits in schizophrenia: Reexamining the evidence. American Journal of Psychiatry, 167(7), 828–835. https://doi.org/10.1176/appi.ajp.2010.09070937
- Kong, L., Bachmann, S., Thomann, P. A., Essig, M., & Schröder, J. (2012). Neurological soft signs and gray matter changes: A longitudinal analysis in first-episode schizophrenia. Schizophrenia Research, 134(1), 27–32. https://doi.org/10.1016/j.schres.2011.09.015
- Lane, H., & Brown, T. (2015). Convergent validity of two motor skill tests used to assess school-age children. Scandinavian Journal of Occupational Therapy, 22(3), 161–172. https://doi.org/10.3109/11038128.2014.969308
- Lenzenweger, M. F. (2000). Two-point discrimination thresholds and schizotypy: Illuminating a somatosensory dysfunction. Schizophrenia Research, 42(2), 111–124. https://doi.org/10.1016/s0920-9964(99)00120-6
- Lloyd, M., MacDonald, M., & Lord, C. (2013). Motor skills of toddlers with autism spectrum disorders. Autism, 17(2), 133–146. https://doi.org/10.1177/1362361311402230
- Lopes, V. P., Stodden, D. F., Bianchi, M. M., Maia, J. A. R., & Rodrigues, L. P. (2012). Correlation between BMI and motor coordination in children. Journal of Science and Medicine in Sport, 15(1), 38–43. https://doi.org/10.1016/j.jsams.2011.07.005
- Marvel, C. L., Schwartz, B. L., & Rosse, R. B. (2004). A quantitative measure of postural sway deficits in schizophrenia. Schizophrenia Research, 68(2–3), 363–372. https://doi.org/10.1016/j.schres.2003.09.003
- Nygard, M., Brobakken, M. F., Roel, R. B., Taylor, J. L., Reitan, S. K., Guzey, I. C., Morken, G., Vedul-Kjelsas, E., Wang, E., & Heggelund, J. (2019). Patients with schizophrenia have impaired muscle force-generating capacity and functional performance. Scandinavian Journal of Medicine & Science in Sports, 29(12), 1968–1979. https://doi.org/10.1111/sms.13526
- Piek, J. P., Pitcher, T. M., & Hay, D. A. (1999). Motor coordination and kinaesthesis in boys with attention deficit-hyperactivity disorder. Developmental Medicine and Child Neurology, 41(3), 159–165. https://doi.org/10.1017/s0012162299000341
- Pieters, L. E., Nadesalingam, N., Walther, S., & van Harten, P. N. (2022). A systematic review of the prognostic value of motor abnormalities on clinical outcome in psychosis. Neuroscience & Biobehavioral Reviews, 132, 691–705. https://doi.org/10.1016/j.neubiorev.2021.11.027
- Pitcher, T. M., Piek, J. P., & Hay, D. A. (2003). Fine and gross motor ability in males with ADHD. Developmental Medicine and Child Neurology, 45(8), 525–535. https://doi.org/10.1111/j.1469-8749.2003.tb00952.x
- Rivilis, I., Hay, J., Cairney, J., Klentrou, P., Liu, J., & Faught, B. E. (2011). Physical activity and fitness in children with developmental coordination disorder: A systematic review. Research in Developmental Disabilities, 32(3), 894–910. https://doi.org/10.1016/j.ridd.2011.01.017
- Robinson, L. E., Stodden, D. F., Barnett, L. M., Lopes, V. P., Logan, S. W., Rodrigues, L. P., & D'Hondt, E. (2015). Motor competence and its effect on positive developmental trajectories of health. Sports Medicine, 45(9), 1273–1284. https://doi.org/10.1007/s40279-015-0351-6
- Simons, J., Capio, C. M., Adriaenssens, P., Delbroek, H., & Vandenbussche, I. (2012). Self-concept and physical self-concept in psychiatric children and adolescents. Research in Developmental Disabilities, 33(3), 874–881. https://doi.org/10.1016/j.ridd.2011.12.012
- Tadin, D., Kim, J., Doop, M. L., Gibson, C., Lappin, J. S., Blake, R., & Park, S. (2006). Weakened center-surround interactions in visual motion processing in schizophrenia. Journal of Neuroscience, 26(44), 11403–11412. https://doi.org/10.1523/JNEUROSCI.2592-06.2006
- Tal-Saban, M., Zarka, S., Grotto, I., Ornoy, A., & Parush, S. (2012). The functional profile of young adults with suspected Developmental Coordination Disorder (DCD). Research in Developmental Disabilities, 33(6), 2193–2202. https://doi.org/10.1016/j.ridd.2012.06.005
- Tanner, J. M., Hughes, P. C. R., & Whitehouse, R. H. (1981). Radiographically determined widths of bone muscle and fat in the upper arm and calf from age 3-18 years. Annals of Human Biology, 8(6), 495-517. Doi.https://doi.org/10.1080/03014468100005351
- van Harten, P. N., Walther, S., Kent, J. S., Sponheim, S. R., & Mittal, V. A. (2017). The clinical and prognostic value of motor abnormalities in psychosis, and the importance of instrumental assessment. Neuroscience & Biobehavioral Reviews, 80, 476–487. https://doi.org/10.1016/j.neubiorev.2017.06.007
- Walther, S., & Mittal, V. A. (2017). Motor system pathology in psychosis. Current Psychiatry Reports, 19(12), 97. https://doi.org/10.1007/s11920-017-0856-9
- Walther, S., & Strik, W. (2012). Motor symptoms and schizophrenia. Neuropsychobiology, 66(2), 77–92. https://doi.org/10.1159/000339456
- Wang, S. M., Ouyang, W., Wu, M., & Kuo, L. (2020). Relationship between motor function and psychotic symptomatology in young–adult patients with schizophrenia. European Archives of Psychiatry and Clinical Neuroscience, 270(3), 373–382. https://doi.org/10.1007/s00406-019-01004-1
- Wuang, Y. P., Su, C. Y., & Huang, M. H. (2012). Psychometric comparisons of three measures for assessing motor functions in preschoolers with intellectual disabilities. Journal of Intellectual Disability Research, 56(6), 567–578. https://doi.org/10.1111/j.1365-2788.2011.01491.x