Comparing the Basic Phenomena Involved in Three Methods of Pore-size Characterization: Gas Adsorption, Liquid Intrusion and Thermoporometry
Renaud Denoyel
Madirel, CNRS-Université de Provence, Centre de St Jérôme, 13397 Marseille cedex 20, France.
Search for more papers by this authorPhilip Llewellyn
Madirel, CNRS-Université de Provence, Centre de St Jérôme, 13397 Marseille cedex 20, France.
Search for more papers by this authorIsabelle Beurroies
Madirel, CNRS-Université de Provence, Centre de St Jérôme, 13397 Marseille cedex 20, France.
Search for more papers by this authorJean Rouquerol
Madirel, CNRS-Université de Provence, Centre de St Jérôme, 13397 Marseille cedex 20, France.
Search for more papers by this authorFrançoise Rouquerol
Madirel, CNRS-Université de Provence, Centre de St Jérôme, 13397 Marseille cedex 20, France.
Search for more papers by this authorLaurent Luciani
Madirel, CNRS-Université de Provence, Centre de St Jérôme, 13397 Marseille cedex 20, France.
Search for more papers by this authorRenaud Denoyel
Madirel, CNRS-Université de Provence, Centre de St Jérôme, 13397 Marseille cedex 20, France.
Search for more papers by this authorPhilip Llewellyn
Madirel, CNRS-Université de Provence, Centre de St Jérôme, 13397 Marseille cedex 20, France.
Search for more papers by this authorIsabelle Beurroies
Madirel, CNRS-Université de Provence, Centre de St Jérôme, 13397 Marseille cedex 20, France.
Search for more papers by this authorJean Rouquerol
Madirel, CNRS-Université de Provence, Centre de St Jérôme, 13397 Marseille cedex 20, France.
Search for more papers by this authorFrançoise Rouquerol
Madirel, CNRS-Université de Provence, Centre de St Jérôme, 13397 Marseille cedex 20, France.
Search for more papers by this authorLaurent Luciani
Madirel, CNRS-Université de Provence, Centre de St Jérôme, 13397 Marseille cedex 20, France.
Search for more papers by this authorAbstract
Gas adsorption at 77 K is probably the most widely used method to characterize mesoporous adsorbents via capillary condensation. Mercury intrusion is also commonly used for the characterization of such materials with the possibility to extend the pore width distribution measurement to the macropore range. More recently water intrusion was proposed to study hydrophobic porous solids. Thermoporometry is a further characterization method, now based on the study of the solid/liquid transition. We can consider that all these methods rely on the modification of the phase diagram of a pure substance under the effect of confinement. For each of them, the equations and models derived are based either on classical thermodynamics or on statistical approaches. In most cases, the derivation of the pore width distribution is carried out with the assumption that the porous system is made up of non-connected cylinders, whereas the actual complexity of the structure is derived from the hysteresis shape. Our aim here is to compare the four approaches above (gas adsorption, mercury intrusion, water intrusion, thermoporometry) on samples giving rise, in their gas adsorption isotherms, to the typical hysteresis loops of the IUPAC classification. Our comparison is in great part carried out after the shape of the hysteresis loops obtained with the various methods and after the information it brings on the mechanism of replacement of a phase by the other within the porous system.
References
- 1 F. Rouquerol, J. Rouquerol, K. S. W. Sing, Adsorption by Powders and Porous Solids, Academic Press, London 1999.
- 2 E. P. Barrett, L. G. Joyner, P. H. Halenda, J. Am. Chem. Soc., 1951, 73, 373.
- 3 A. V. Neimark, P. I. Ravikovitch, Microporous Mesoporous Materials, 2001, 44–45, 697.
- 4 K. S.W Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol, T. Siemienievska, Pure Appl. Chem., 1985, 57, 603.
- 5 N. A. Seaton, Chem. Eng. Sci., 1985, 46, 1895.
- 6 H. M. Rootare, C. F. Prenzlow, J. Phys. Chem., 1967, 71, 2734.
- 7 J. G. Groen, L. A. A. Peffer, J. Perez, Studies in Surface Sci. Cat., 2002, 144, 91.
- 8 E. W. Washburn, Phys. Rev., 1921, 17, 273.
- 9 B. D. Atkins, B. H. Davis, Ads. Sci. Technol., 1988, 5, 76.
- 10 B. D. Atkins, B. H. Davis, Ads. Sci. Technol., 1988, 5, 168.
- 11 B. Davis, Applied Catalysis, 1984, 10, 185.
- 12 K. L. Murray, N. A. Seaton, M. A. Day, Langmuir, 1999, 15, 8155.
- 13 G. P. Androutsopoulos, R. Mann, Chem. Eng. Sci., 1979, 34, 1203.
- 14 G. C. Wall, R. J.C. Brown, J. Colloid Interface Sci., 1981, 82, 141.
- 15 Y. C. Yortsos, Experimental Methods in the Physical Sciences, 1999, 35, 69–117.
- 16 M. Day, I. B. Parker, J. Bell, R. Fletcher, J. Duffie, K. Sing, D. Nicholson, Studies in Surface Sci., 1994, 87, 225.
- 17 G. Zgrablich, S. Mendioroz, L. Daza, J. Pajares, V. Mayagoitia, F. Rojas, W. C. Conner, Langmuir, 1991, 7, 779–785.
- 18 V. A. Eroshenko, A. Y. Fadeev, Colloid Journal, 1995, 57, 4, 446–449.
- 19 A. Y. Fadeev, V. A. Eroshenko, J. Colloid Interface Sci., 1997, 187, 275–282.
- 20 F. Gomez, R. Denoyel, J. Rouquerol, Langmuir, 2000, 16, 3474.
- 21
G. Fagerlund, Matériaux et Constructions, 1973, 6, 215–225.
10.1007/BF02479036 Google Scholar
- 22 M. Brun, A. Lallemand, J. F. Quinson, C. Eyraud, Thermochimica Acta, 1977, 21, 59–88.
- 23 J. Dore, Chemical Physics, 2000, 258, 347.
- 24 K. Morishige, K. Nobuoka, J. Chemical Physics, 1997, 107, 6965.
- 25 M. Iza, S. Woerly, C. Danumah, S. Kaluiaguine, M. Bousmina, Polymer, 2000, 41, 5885–5893.
- 26 M. Pauthe, J. F. Quinson, J. D.F. Ramsay, Studies in surface science and catalysis, 1994, 87, 283–292.
- 27 G. W. Scherer, D. M. Smith, D. Stein, J. Non-Cryst. Solids, 1995, 186, 309–315.
- 28 R. Denoyel, R. J. M. Pellenq, Langmuir, 2002, 18, 2710.
- 29 P. L. Llewellyn, Y. Grillet, F. Schüth, H. Reichert, K. K. Unger, Microporous Materials, 1994, 3, 345–349.
- 30 R. Denoyel, I. Beurroies, D. Vincent, J. Thermal Analysis Calorimetry, 2002, 70, 483–492.
- 31 R. Defay, I. Prigogine, in Surface Tension and Adsorption, Longmans, Green and Co, Bristol, 1966.
- 32 T. Martin, B. Lefevre, D. Brunel, A. Galarneau, F. Di Renzo, F. Fajula, P. F. Gobin, J. F. Quinson, G. Vigier, Chem. Commun., 2002, 24–25.
- 33 P. I. Ravikovitch, A. Vishnyakov, A. V. Neimark, Phys. Rev. E, 2001, 64, 011602–1.
- 34 H. Giesche, Materials Research Society Symposium Proceedings, 1996, 431, 251–258.
- 35 L. D. Gelb, K. E. Gubbins, R. Radhakrishnan and M. Sliwinska-Bartkowiak, Rep. Prog. Phys., 1999, 62, 1573–1659.
- 36 A. A. Antoniou, J. Phys. Chem., 1964, 10, 2754.
- 37 K. Overloop, L. Van Gerven, J. Magn. Res., A, 1993, 101, 179. Booth H. F. and Strange J. H., Mol. Phys., 1998, 93, 263.
- 38 K. Morishige, K. Kawano, J. Chem. Phys., 1998, 110, 4867.
- 39 H. Liu, L. Zhang, N. A. Seaton, Studies Surf Sci. Catalysis, 1994, 87, 129.
- 40 J. F. Quinson, M. Astier, M. Brun, Applied Catal., 1987, 30, 123–130.
- 41 S. P. Rigby, J. Colloid Interface Sci., 2000, 224, 382–296.
- 42 P. I. Ravikovitch, A. V. Neimark, Langmuir, 2002, 18, 9830.
- 43 P. I. Ravikovitch, A. V. Neimark, Langmuir, 2002, 18, 1550.
- 44 L. Sarkisov, P. A. Monson, Langmuir, 2000, 16, 9857.
- 45 G. P. Matthews, C. J. Ridgwaw, M. C. Spearing, J. Colloid Interface Sci., 1995, 171, 8–27.
- 46 C. G. Burgess, D. H. Everett, S. Nuttal, Pure Appl. Chem., 1989, 61, 1845–52.
- 47 A. de Keiser, T. Michalski, G. H. Findenegg, Pure Appl. Chem., 1991, 63, 1495.
- 48 M. Thommes, G. H. Findenegg, Langmuir, 1994, 10, 4270.
- 49 V. Eroshenko, R. C. Regis, M. Soulard, J. Patarin, J. Am. Chem. Soc., 2001, 123, 8129–8130.
- 50 B. Lefevre, A. Saugey, J. L. Barrat, L. Bocquet, E. Charlaix, P. F. Gobin, G. Vigier, J. Chem. Phys., in press.
- 51 P. I. Ravikovitch, A. V. Neimark, Colloids Surfaces A, 2001, 187, 11–21.
- 52 S. P. Rigby, J. Colloid Interface Sci., 2002, 250, 175–190.
- 53 A. A. Liabastre, C. Orr, J. Colloid Interface Sci., 1978, 64, 1.
- 54 J. Kloubek, Powder Technol., 1981, 29, 63.