Synthesis and solid-state self-assembly of poly(ethylene glycol)-b-poly(γ-benzyl-l-glutamate)s and single-walled carbon nanotubes
Corresponding Author
Haoyu Tang
Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, Hunan, 411105 China
Department of Chemistry and Macromolecular Studies Group, Louisiana State University, Baton Rouge, Louisiana, 70803
Correspondence to: H. Tang (E-mail: [email protected]) or D. Zhang (E-mail: [email protected])Search for more papers by this authorYing Ling
Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, Hunan, 411105 China
Search for more papers by this authorYong Deng
Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, Hunan, 411105 China
Search for more papers by this authorDonghui Zhang
Department of Chemistry and Macromolecular Studies Group, Louisiana State University, Baton Rouge, Louisiana, 70803
Search for more papers by this authorCorresponding Author
Haoyu Tang
Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, Hunan, 411105 China
Department of Chemistry and Macromolecular Studies Group, Louisiana State University, Baton Rouge, Louisiana, 70803
Correspondence to: H. Tang (E-mail: [email protected]) or D. Zhang (E-mail: [email protected])Search for more papers by this authorYing Ling
Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, Hunan, 411105 China
Search for more papers by this authorYong Deng
Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, Hunan, 411105 China
Search for more papers by this authorDonghui Zhang
Department of Chemistry and Macromolecular Studies Group, Louisiana State University, Baton Rouge, Louisiana, 70803
Search for more papers by this authorGraphical Abstract
A series of coil-rod poly(ethylene glycol)-b-poly(γ-benzyl-l-glutamate)s (PEG-b-PBLGs) with α-helical conformations have been prepared from methoxypoly(ethylene glycol) amine (mPEG-NH2)-mediated ring-opening polymerization of γ-benzyl-l-glutamic acid based N-carboxylanhydride. PEG-b-PBLGs form a lamellar structure where PBLG segments pack into hexagonal arrays when frod is less than 0.28. Incorporation of single-walled carbon nanotubes (SWCNT) causes an increase of the d-spacing of both lamellar and hexagonal packing, suggesting that in the intercalation of SWCNTs into the PEG-b-PBLGs matrices, the SWCNTs are oriented normal to the lamellar interface.
Supporting Information
Additional Supporting Information may be found in the online version of this article.
Filename | Description |
---|---|
pola27193-sup-0001-suppinfo.docx22 KB | Supplementary Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES AND NOTES
- 1S. Iijima, T. Ichihashi, Nature 1993, 363, 603–605.
- 2R. D. Saito, M. S. Dresselhaus, Physical Properties of Carbon Nanotubes; Imperial College Press: London, 1999.
- 3S. J. Tans, M. H. Devoret, H. Dai, A. Thess, R. E. Smalley, L. J. Georliga, C. Dekker, Nature 1997, 386, 474–477.
- 4J. Hone, M. C. Llaguno, N. M. Nemes, A. T. Johnson, J. E. Fischer, D. A. Walters, M. J. Casavant, J. Schmidt, R. E. Smalley, Appl. Phys. Lett. 2000, 77, 666–668.
- 5Q. H. Wang, T. D. Corrigan, J. Y. Dai, R. P. H. Chang, A. R. Krauss, Appl. Phys. Lett. 1997, 70, 3308–3310.
- 6M. M. J. Treacy, T. W. Ebbesen, J. M. Gibson, Nature 1996, 381, 678–680.
- 7Y. Zeng, L. Ci, B. J. Carey, R. Vajtai, P. M. Ajayan, ACS Nano 2010, 4, 6798–6804.
- 8C. Ji, H. Li, L. Zhang, Y. Liu, Y. Li, Y. Jia, Z. Li, P. Li, E. Shi, J. Wei, K. Wang, H. Zhu, D. Wu, A. Cao, ACS Nano 2011, 5, 5656–5661.
- 9G. S. Tulevski, J. Hannon, A. Afzali, Z. Chen, P. Avouris, C. R. Kagan, J. Am. Chem. Soc. 2007, 129, 11964–11968.
- 10S. R. Shin, H. Bae, J. M. Cha, J. Y. Mun, Y.-C. Chen, H. Tekin, H. Shin, S. Farshchi, M. R. Dokmeci, S. Tang, A. Khademhosseini, ACS Nano 2011, 6, 362–372.
- 11X. Sun, T. Chen, Z. Yang, H. Peng, Acc. Chem. Res. 2012, 46, 539–549.
- 12D. Tasis, N. Tagmatarchis, A. Bianco, M. Prato, Chem. Rev. 2006, 106, 1105–1136.
- 13H. T. Ban, M. Shigeta, T. Nagamune, M. Uejima, J. Polym. Sci. Part A: Polym. Chem. 2013, 51, 4584–4591.
- 14Q. Hu, Y. Deng, Q. Yuan, Y. Ling, H. Tang, J. Polym. Sci. Part A: Polym. Chem. 2014, 52, 149–153.
- 15M. J. Kayatin, V. A. Davis, J. Polym. Sci. Part A: Polym. Chem. 2013, 51, 3716–3725.
- 16Y.-C. Lin, S.-W. Kuo, J. Polym. Sci. Part A: Polym. Chem. 2014, 52, 321–329.
- 17D. Nguyen, C. H. Such, B. S. Hawkett, J. Polym. Sci. Part A: Polym. Chem. 2013, 51, 250–257.
- 18R. M. Novais, F. Simon, P. Pötschke, T. Villmow, J. A. Covas, M. C. Paiva, J. Polym. Sci. Part A: Polym. Chem. 2013, 51, 3740–3750.
- 19Q. Zhuang, X. Mao, Z. Xie, X. Liu, Q. Wang, Y. Chen, Z. Han, J. Polym. Sci. Part A: Polym. Chem. 2012, 50, 4732–4739.
- 20D. A. Britz, A. N. Khlobystov, Chem. Soc. Rev. 2006, 35, 637–659.
- 21R. Shvartzman-Cohen, E. Nativ-Roth, E. Baskaran, Y. Levi-Kalisman, I. Szleifer, R. Yerushalmi-Rozen, J. Am. Chem. Soc. 2004, 126, 14850–14857.
- 22M. Granite, A. Radulescu, W. Pyckhout-Hintzen, Y. Cohen, Langmuir 2010, 27, 751–759.
- 23J. M. Gonzalez-Dominguez, M. A. Tesa-Serrate, A. Anson-Casaos, A. M. Diez-Pascual, M. A. Gomez-Fatou, M. T. Martinez, J. Phys. Chem. C 2012, 116, 7399–7408.
- 24A. Di Crescenzo, M. Aschi, A. Fontana, Macromolecules 2012, 45, 8043–8050.
- 25B. Li, L. Li, B. Wang, C. Li, Nat. Nanotechnol. 2009, 4, 358–362.
- 26J. Sung, J. Huh, J.-H. Choi, S. J. Kang, Y. S. Choi, G. T. Lee, J. Cho, J.-M. Myoung, C. Park, Adv. Funct. Mater. 2010, 20, 4305–4313.
- 27M. Yuksel, D. G. Colak, M. Akin, I. Cianga, M. Kukut, E. I. Medine, M. Can, S. Sakarya, P. Unak, S. Timur, Y. Yagci, Biomacromolecules 2012, 13, 2680–2691.
- 28N. Yu, X. Zheng, Q. Xu, L. He, Macromolecules 2011, 44, 3958–3965.
- 29C. Doe, H.-S. Jang, S. R. Kline, S.-M. Choi, Macromolecules 2010, 43, 5411–5416.
- 30H.-A. Klok, J. F. Langenwalter, S. Lecommandoux, Macromolecules 2000, 33, 7819–7826.
- 31S. Lecommandoux, M.-F. Achard, J. F. Langenwalter, H.-A. Klok, Macromolecules 2001, 34, 9100–9111.
- 32G. Floudas, P. Papadopoulos, H. A. Klok, G. W. M. Vandermeulen, J. Rodriguez-Hernandez, Macromolecules 2003, 36, 3673–3683.
- 33S. Ludwigs, G. Krausch, G. Reiter, M. Losik, M. Antonietti, H. Schlaad, Macromolecules 2005, 38, 7532–7535.
- 34L. Rubatat, X. Kong, S. A. Jenekhe, J. Ruokolainen, M. Hojeij, R. Mezzenga, Macromolecules 2008, 41, 1846–1852.
- 35Q.-H. Zhou, J.-K. Zheng, Z. Shen, X.-H. Fan, X.-F. Chen, Q.-F. Zhou, Macromolecules 2010, 43, 5637–5646.
- 36A. Sánchez-Ferrer, R. Mezzenga, Macromolecules 2009, 43, 1093–1100.
- 37S. Junnila, N. Houbenov, A. Karatzas, N. Hadjichristidis, A. Hirao, H. Iatrou, O. Ikkala, Macromolecules 2012, 45, 2850–2856.
- 38W. Daly, D. Poche, Tetrahedron Lett. 1988, 29, 5859–5862.
- 39H. Tang, D. Zhang, J. Polym. Sci. Part A: Polym. Chem. 2010, 48, 2340–2350.
- 40L. Zhu, S. Z. D. Cheng, B. H. Calhoun, Q. Ge, R. P. Quirk, E. L. Thomas, B. S. Hsiao, F. Yeh, B. Lotz, J. Am. Chem. Soc. 2000, 122, 5957–5967.
- 41G. Floudas, C. Tsitsilianis, Macromolecules 1997, 30, 4381–4390.
- 42M. S. Strano, J. Am. Chem. Soc. 2003, 125, 16148–16153.
- 43M. S. Strano, S. K. Doorn, E. H. Haroz, C. Kittrell, R. H. Hauge, R. E. Smalley, Nano Lett. 2003, 3, 1091–1096.
- 44S. A. Curran, J. A. Talla, D. Zhang, D. L. Carroll, J. Mater. Res. 2005, 20, 3368–3373.
- 45H. Tang, D. Zhang, J. Polym. Sci. Part A: Polym. Chem. 2013, 51, 4489–4497.
- 46F. Zhang, H. Zhang, Z. Zhang, Z. Chen, Q. Xu, Macromolecules 2008, 41, 4519–4523.
- 47A. Rao, D. Eklund, S. Bandow, A. Thess, R. Smalley, Nature 1997, 388, 257–259.
- 48S. M. Keogh, T. G. Hedderman, E. Gregan, G. Farrell, G. Chambers, H. J. Byrne, J. Phys. Chem. B 2004, 108, 6233–6241.