Two-Photon Polymerizable Nanocomposites Incorporating Brazilian Red Propolis for Tailored Wound Healing Applications
Laura M. S. Santos
Optics and Nanoscopy Group, Institute of Physics, Federal University of Alagoas (UFAL), Maceió, Brazil
Search for more papers by this authorJonathas M. Oliveira
Federal Institute of Alagoas (IFAL), Coruripe, Brazil
Search for more papers by this authorLaís F. A. M. Oliveira
Optics and Nanoscopy Group, Institute of Physics, Federal University of Alagoas (UFAL), Maceió, Brazil
Search for more papers by this authorJosé M. S. Oliveira
Postgraduate Program in Health Research, Cesmac University Center, Maceió, Brazil
Search for more papers by this authorIngrid F. Leite
Postgraduate Program in Health Research, Cesmac University Center, Maceió, Brazil
Search for more papers by this authorAlcenísio J. Jesus-Silva
Optics and Nanoscopy Group, Institute of Physics, Federal University of Alagoas (UFAL), Maceió, Brazil
Search for more papers by this authorGlauber T. Silva
Physical Acoustics Group, Institute of Physics, Federal University of Alagoas, Maceió, Brazil
Search for more papers by this authorCorresponding Author
Eduardo J. S. Fonseca
Optics and Nanoscopy Group, Institute of Physics, Federal University of Alagoas (UFAL), Maceió, Brazil
Correspondence:
Eduardo J. S. Fonseca ([email protected])
Search for more papers by this authorLaura M. S. Santos
Optics and Nanoscopy Group, Institute of Physics, Federal University of Alagoas (UFAL), Maceió, Brazil
Search for more papers by this authorJonathas M. Oliveira
Federal Institute of Alagoas (IFAL), Coruripe, Brazil
Search for more papers by this authorLaís F. A. M. Oliveira
Optics and Nanoscopy Group, Institute of Physics, Federal University of Alagoas (UFAL), Maceió, Brazil
Search for more papers by this authorJosé M. S. Oliveira
Postgraduate Program in Health Research, Cesmac University Center, Maceió, Brazil
Search for more papers by this authorIngrid F. Leite
Postgraduate Program in Health Research, Cesmac University Center, Maceió, Brazil
Search for more papers by this authorAlcenísio J. Jesus-Silva
Optics and Nanoscopy Group, Institute of Physics, Federal University of Alagoas (UFAL), Maceió, Brazil
Search for more papers by this authorGlauber T. Silva
Physical Acoustics Group, Institute of Physics, Federal University of Alagoas, Maceió, Brazil
Search for more papers by this authorCorresponding Author
Eduardo J. S. Fonseca
Optics and Nanoscopy Group, Institute of Physics, Federal University of Alagoas (UFAL), Maceió, Brazil
Correspondence:
Eduardo J. S. Fonseca ([email protected])
Search for more papers by this authorFunding: This work was supported by the Fundação de Amparo à Pesquisa do estado de Alagoas—FAPEAL (APQ2019041000017), the Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq, and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Finance Code No. 001).
ABSTRACT
This study introduces novel nanocomposites incorporating Brazilian red propolis (RPNP) into acrylic resins, designed for advanced wound dressing applications. The nanocomposites exhibit enhanced mechanical properties, including increased flexibility and reduced elastic modulus, along with potent antimicrobial activity, particularly against Staphylococcus aureus. The ability to customize drug release profiles—tuning the polymeric compounds of the nanocomposite—offers versatile treatment options for various wound conditions. Spectroscopic and FTIR analyses confirmed the presence of bioactive phenolic compounds, such as naringenin, which contributes to the antimicrobial efficacy of the materials. Additionally, Two-Photon Polymerization enabled the creation of customizable microarchitectures, supporting cell adhesion, proliferation, and differentiation, further promoting wound healing. These features, coupled with the bioactivity of Brazilian red propolis, position the nanocomposites as promising platforms for wound care, combining infection control with enhanced healing. Future research will focus on clinical trials and the further refinement of these materials for broader biomedical applications.
Graphical Abstract
Nanocomposites combining Brazilian red propolis nanoparticles with acrylic resins exhibit controlled nanoparticle release, good flexibility, and antibacterial activity against Staphylococcus aureus. Moreover, these materials are highly suitable for the fabrication of cellular scaffolds via two-photon polymerization, making them strong candidates for advanced wound dressing applications.
References
- 1J. V. Campos, O. B. G. Assis, and R. Bernardes-Filho, “Atomic Force Microscopy Evidences of Bacterial Cell Damage Caused by Propolis Extracts on E. Coli and S. aureus,” Food Science and Technology 40 (2019): 55–61, https://doi.org/10.1590/fst.32018.
10.1590/fst.32018 Google Scholar
- 2L. F. A. M. Oliveira, L. V. A. T. Silva, T. G. do Nascimento, et al., “Antioxidant and Antimicrobial Activity of Red Propolis Embedded Mesoporous Silica Nanoparticles,” Drug Development and Industrial Pharmacy 46, no. 7 (2020): 1199–1208, https://doi.org/10.1080/03639045.2020.1782423.
- 3S. Huang, C. P. Zhang, K. Wang, G. Q. Li, and F. L. Hu, “Recent Advances in the Chemical Composition of Propolis,” Molecules 19, no. 12 (2014): 19610–19632, https://doi.org/10.3390/molecules191219610.
- 4V. R. Pasupuleti, L. Sammugam, N. Ramesh, and S. H. Gan, “Honey, Propolis, and Royal Jelly: A Comprehensive Review of Their Biological Actions and Health Benefits,” Oxidative Medicine and Cellular Longevity 1 (2017): 1259510, https://doi.org/10.1155/2017/1259510.
10.1155/2017/1259510 Google Scholar
- 5R. Hossain, C. Quispe, R. A. Khan, et al., “Propolis: An Update on Its Chemistry and Pharmacological Applications,” Chinese Medicine 17, no. 1 (2022): 100, https://doi.org/10.1186/s13020-022-00651-2.
- 6J. M. S. Oliveira, T. F. S. Cavalcanti, I. F. Leite, et al., “Propolis in Oral Healthcare: Antibacterial Activity of a Composite Resin Enriched With Brazilian Red Propolis,” Frontiers in Pharmacology 12 (2021): 787633, https://doi.org/10.3389/fphar.2021.787633.
- 7A. Jacob, A. Parolia, A. Pau, and F. D. Amalraj, “The Effects of Malaysian Propolis and Brazilian Red Propolis on Connective Tissue Fibroblasts in the Wound Healing Process,” BMC Complementary and Alternative Medicine 15 (2015): 1–10, https://doi.org/10.1186/s12906-015-0814-1.
- 8V. C. Silva, A. M. G. S. Silva, J. A. D. Basílio, et al., “New Insights for Red Propolis of Alagoas—Chemical Constituents, Topical Membrane Formulations and Their Physicochemical and Biological Properties,” Molecules 25, no. 24 (2020): 5811, https://doi.org/10.3390/molecules25245811.
- 9R. L. Cardoso, F. Maboni, G. Machado, S. H. Alves, and A. C. Vargas, “Antimicrobial Activity of Propolis Extract Against Staphylococcus Coagulase Positive and Malassezia Pachydermatis of Canine Otitis,” Veterinary Microbiology 142 (2010): 432–434, https://doi.org/10.1016/j.vetmic.2009.09.070.
- 10I. A. Freires, S. M. Alencar, and P. L. Rosalen, “A Pharmacological Perspective on the Use of Brazilian Red Propolis and Its Isolated Compounds Against Human Diseases,” European Journal of Medicinal Chemistry 110 (2016): 267–279, https://doi.org/10.1016/j.ejmech.2016.01.033.
- 11R. P. D. Silva, B. A. S. Machado, G. A. Barreto, et al., “Antioxidant, Antimicrobial, Antiparasitic, and Cytotoxic Properties of Various Brazilian Propolis Extracts,” PLoS One 12, no. 3 (2017): e0172585, https://doi.org/10.1371/journal.pone.0172585.
- 12S. Afrasiabi, M. Pourhajibagher, N. Chiniforush, and A. Bahador, “Propolis Nanoparticle Enhances the Potency of Antimicrobial Photodynamic Therapy Against Streptococcus mutans in a Synergistic Manner,” Scientific Reports 10, no. 1 (2020): 15560, https://doi.org/10.1038/s41598-020-72119-y.
- 13E. Rajczak, B. Tylkowski, M. Constantí, et al., “Preparation and Characterization of Uv-Curable Acrylic Membranes Embedding Natural Antioxidants,” Polymers 12, no. 2 (2020): 358, https://doi.org/10.3390/polym12020358.
- 14J. S. Son, E. J. Hwang, L. S. Kwon, et al., “Antibacterial Activity of Propolis-Embedded Zeolite Nanocomposites for Implant Application,” Materials 14, no. 5 (2021): 1193, https://doi.org/10.3390/ma14051193.
- 15C. E. A. Botteon, L. B. Silva, G. V. Ccana-Ccapatinta, et al., “Biosynthesis and Characterization of Gold Nanoparticles Using Brazilian Red Propolis and Evaluation of Its Antimicrobial and Anticancer Activities,” Scientific Reports 11, no. 1 (2021): 1974, https://doi.org/10.1038/s41598-021-81281-w.
- 16V. T. Barbosa, J. K. C. Souza, V. Alvino, et al., “Biogenic Synthesis of Silver Nanoparticles Using Brazilian Propolis,” Biotechnology Progress 35, no. 6 (2019): e2888, https://doi.org/10.1002/btpr.2888.
- 17M. Stojko, D. Wolny, and J. Włodarczyk, “Nonwoven Releasing Propolis as a Potential New Wound Healing Method—A Review,” Molecules 26, no. 18 (2021): 5701, https://doi.org/10.3390/molecules26185701.
- 18V. C. Silva, T. G. Nascimento, N. L. O. N. Mergulhão, et al., “Development of a Polymeric Membrane Impregnated With Poly-Lactic Acid (PLA) Nanoparticles Loaded With Red Propolis (RP),” Molecules 27, no. 20 (2022): 6959, https://doi.org/10.3390/molecules27206959.
- 19A. I. Moreno, Y. Orozco, S. Ocampo, et al., “Effects of Propolis Impregnation on Polylactic Acid (PLA) Scaffolds Loaded With Wollastonite Particles Against Staphylococcus aureus, Staphylococcus Epidermidis, and Their Coculture for Potential Medical Devices,” Polymers 15, no. 12 (2023): 2629, https://doi.org/10.3390/polym15122629.
- 20I. C. G. Mendonça, I. C. C. M. Porto, T. G. Nascimento, et al., “Brazilian Red Propolis: Phytochemical Screening, Antioxidant Activity and Effect Against Cancer Cells,” BMC Complementary and Alternative Medicine 15 (2015): 1–12, https://doi.org/10.1186/s12906-015-0888-9.
- 21M. L. Bruschi, H. C. Rosseto, L. M. B. Francisco, L. A. S. Toledo, and R. R. A. Pereira, “Chapter 20: Nanostructured Propolis as Therapeutic Systems With Antimicrobial Activity,” In Nano- and Microscale Drug Delivery Systems (2017): 377–391, https://doi.org/10.1016/B978-0-323-52727-9.00020-0.
10.1016/B978-0-323-52727-9.00020-0 Google Scholar
- 22A. I. Moreno Florez, S. Malagon, S. Ocampo, et al., “In Vitro Evaluation of the Osteogenic and Antimicrobial Potential of Porous Wollastonite Scaffolds Impregnated With Ethanolic Extracts of Propolis,” Frontiers in Bioengineering and Biotechnology 12 (2024): 1321466, https://doi.org/10.3389/fbioe.2024.1321466.
- 23E. Marcello, R. Nigmatullin, P. Basnett, et al., “3D Melt-Extrusion Printing of Medium Chain Length Polyhydroxyalkanoates and Their Application as Antibiotic-Free Antibacterial Scaffolds for Bone Regeneration,” ACS Biomaterials Science & Engineering 10, no. 8 (2024): 5136–5153, https://doi.org/10.1021/acsbiomaterials.4c00624.
- 24S. O'Halloran, A. Pandit, A. Heise, and A. Kellett, “Two-Photon Polymerization: Fundamentals, Materials, and Chemical Modification Strategies,” Advanced Science 10, no. 7 (2023): 2204072, https://doi.org/10.1002/advs.202204072.
- 25L. M. S. Santos, J. M. Oliveira, E. C. O. Silva, et al., “Mechanical and Morphological Responses of Osteoblast-Like Cells to Two-Photon Polymerized Microgrooved Surfaces,” Journal of Biomedical Materials Research, Part A 111, no. 2 (2022): 234–244, https://doi.org/10.1002/jbm.a.37454.
- 26O. Kufelt, A. El-Tamer, C. Sehring, S. Schlie-Wolter, and B. N. Chichkov, “Hyaluronic Acid Based Materials for Scaffolding via Two-Photon Polymerization,” Biomacromolecules 15, no. 2 (2014): 650–659, https://doi.org/10.1021/bm401712q.
- 27Z. Huang, G. C.-P. Tsui, Y. Deng, and C.-Y. Tang, “Two-Photon Polymerization Nanolithography Technology for Fabrication of Stimulus-Responsive Micro/Nano-Structures for Biomedical Applications,” Nanotechnology Reviews 9, no. 1 (2020): 1118–1136, https://doi.org/10.1515/ntrev-2020-0073.
- 28 A. S. T. M Standard, “Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials. ASTM D790,” 1997 Annual book of ASTM standards.
- 29T. G. Nascimento, N. M. Nascimento, A. S. Ribeiro, et al., “Preparation and Characterization of Chitosanates Loaded With Brazilian Red Propolis Extract,” Journal of Thermal Analysis and Calorimetry 147 (2022): 1–12, https://doi.org/10.1007/s10973-021-11060-2.
10.1007/s10973?021?11060?2 Google Scholar
- 30L. C. Rufatto, P. Luchtenberg, C. Garcia, et al., “Brazilian Red Propolis: Chemical Composition and Antibacterial Activity Determined Using Bioguided Fractionation,” Microbiological Research 214 (2018): 74–82, https://doi.org/10.1016/j.micres.2018.05.003.
- 31H. B. Dias, M. I. B. Bernardi, T. M. Bauab, A. C. Hernandes, and A. N. S. Rastelli, “Titanium Dioxide and Modified Titanium Dioxide by Silver Nanoparticles as an Anti Biofilm Filler Content for Composite Resins,” Dental Materials 35, no. 2 (2019): e36–e46, https://doi.org/10.1016/j.dental.2018.11.002.
- 32S. T. Hojati, H. Alaghemand, F. Hamze, et al., “Antibacterial, Physical and Mechanical Properties of Flowable Resin Composites Containing Zinc Oxide Nanoparticles,” Dental Materials 29, no. 5 (2013): 495–505, https://doi.org/10.1016/j.dental.2013.03.011.
- 33Y. Zhang, Y.-Y. Chen, L. Huang, Z.-G. Chai, L.-J. Shen, and Y.-H. Xiao, “The Antifungal Effects and Mechanical Properties of Silver Bromide/Cationic Polymer Nano-Composite-Modified Poly-Methyl Methacrylate-Based Dental Resin,” Scientific Reports 7, no. 1 (2017): 1547, https://doi.org/10.1038/s41598-017-01686-4.
- 34V. Adaškevičiūtė, V. Kaškonienė, P. Kaškonas, K. Barčauskaitė, and A. Maruška, “Comparison of Physicochemical Properties of Bee Pollen With Other Bee Products,” Biomolecules 9 (2019): 819, https://doi.org/10.3390/biom9120819.
- 35S. Cavalu, S. Bisboaca, I. M. Mates, et al., “Novel Formulation Based on Chitosan-Arabic Gum Nanoparticles Entrapping Propolis Extract,” Revue de Chimie 69 (2018): 3756–3760, https://doi.org/10.37358/RC.18.12.6836.
- 36R. Bilginer, D. Ozkendir-Inanc, U. H. Yildiz, and A. Arslan-Yildiz, “Biocomposite Scaffolds for 3D Cell Culture: Propolis Enriched Polyvinyl Alcohol Nanofibers Favoring Cell Adhesion,” Journal of Applied Polymer Science 138 (2021): 50287, https://doi.org/10.1002/app.50287.
- 37K. Sutjarittangtham, S. Sanpa, T. Tunkasiri, P. Chantawannakul, U. Intatha, and S. Eitssayeam, “Bactericidal Effects of Propolis/Polylactic Acid (PLA) Nanofibres Obtained via Electrospinning,” Journal of Apicultural Research 53 (2014): 109–115, https://doi.org/10.3896/IBRA.1.53.1.11.
- 38B. Yao, H. Shi, H. Bi, and L. Zhang, “Optical Properties of ZnO Loaded in Mesoporous Silica,” Journal of Physics: Condensed Matter 12 (2000): 6265–6270, https://doi.org/10.1088/0953-8984/12/28/322.
- 39L. F. Azevedo, P. F. Silva, M. P. Brandão, et al., “Polymeric Nanoparticle Systems Loaded With Red Propolis Extract: A Comparative Study of the Encapsulating Systems, PCL-Pluronic Versus Eudragit E100-Pluronic,” Journal of Apicultural Research 57 (2018): 255–270, https://doi.org/10.1080/00218839.2017.1412878.
10.1080/00218839.2017.1412878 Google Scholar
- 40R. K. Sharma, G. Dey, P. Banerjee, et al., “Influence of Chemical and Bio-Surfactants on Physiochemical Properties in Mesoporous Silica Nanoparticles Synthesis,” Journal of Materials Research and Technology 24 (2023): 2629–2639, https://doi.org/10.1016/j.jmrt.2023.03.170.
- 41L. Huang, J. Ma, X. Wang, P. Zhang, L. Yu, and S. Zhang, “Mesoporous Silica Nanoparticles-Loaded Methyl 3-(3, 5-di-Tert-Butyl-4-Hydroxyphenyl) Propanoate as a Smart Antioxidant of Synthetic Ester Oil,” Tribology International 121 (2018): 114–120, https://doi.org/10.1016/j.triboint.2018.01.042.
- 42M. Kmiotek, D. Bieliński, and M. Piotrowska, “Propolis as an Antidegradant and Biocidal Agent for Natural Rubber,” Journal of Applied Polymer Science 135 (2018): 45911, https://doi.org/10.1002/app.45911.
- 43I. S. M. Silva, L. M. A. C. Gaspar, A. M. O. Rocha, et al., “Encapsulation of Red Propolis in Polymer Nanoparticles for the Destruction of Pathogenic Biofilms,” AAPS PharmSciTech 21 (2020): 1–9, https://doi.org/10.1208/s12249-019-1576-8.
- 44T. G. Nascimento, G. D. P. Redondo, C. T. A. Abreu, et al., “Modified Release Microcapsules Loaded With Red Propolis Extract Obtained by Spray-Dryer Technique: Phytochemical, Thermal and Physicochemical Characterizations,” Journal of Thermal Analysis and Calorimetry 138 (2019): 3559–3569, https://doi.org/10.1007/s10973-019-08287-5.
10.1007/s10973-019-08287-5 Google Scholar
- 45S. Saghebasl, A. Nobakht, H. Saghebasl, S. Hayati, O. Naturi, and R. Rahbarghazi, “Sandwich-Like Electro-Conductive Polyurethane-Based Gelatin/Soybean Oil Nanofibrous Scaffolds With a Targeted Release of Simvastatin for Cardiac Tissue Engineering,” Biological Engineering 17 (2023): 42, https://doi.org/10.1186/s13036-023-00364-6.
- 46S. Ulag, E. Ilhan, R. Demirhan, et al., “Propolis-Based Nanofiber Patches to Repair Corneal Microbial Keratitis,” Molecules 26 (2021): 2577, https://doi.org/10.3390/molecules26092577.
- 47Q. Li, F. Lu, G. Zhou, et al., “Silver Inlaid With Gold Nanoparticle/Chitosan Wound Dressing Enhances Antibacterial Activity and Porosity, and Promotes Wound Healing. Lan,” Biomacromolecules 18 (2017): 3766–3775, https://doi.org/10.1021/acs.biomac.7b01180.
- 48J. Yang, Y. He, S. Nan, et al., “Therapeutic Effect of Propolis Nanoparticles on Wound Healing,” Journal of Drug Delivery Science and Technology 82 (2023): 104284, https://doi.org/10.1016/j.jddst.2023.104284.
- 49M. Stojko, J. Włodarczyk, M. Sobota, et al., “Biodegradable Electrospun Nonwovens Releasing Propolis as a Promising Dressing Material for Burn Wound Treatment,” Pharmaceutics 12 (2020): 883, https://doi.org/10.3390/pharmaceutics12090883.
- 50D. C. Zancanela, R. D. Herculano, C. S. Funari, C. M. Marcos, A. M. F. Almeida, and A. C. Guastaldi, “Physical, Chemical and Antimicrobial Implications of the Association of Propolis With a Natural Rubber Latex Membrane,” Materials Letters 209 (2017): 39–42, https://doi.org/10.1016/j.matlet.2017.07.093.
- 51S. M. Doodmani, A. Bagheri, O. Natouri, A. Nobakht, and S. Saghebasl, “Electrospinning-Netting of Spider-Inspired Polycaprolactone/Collagen Nanofiber-Nets Incorporated With Propolis Extract for Enhanced Wound Healing Applications,” International Journal of Biological Macromolecules 267 (2024): 131452, https://doi.org/10.1016/j.ijbiomac.2024.131452.
- 52B. Fan, N. Cui, Z. Xu, et al., “Thermoresponsive and Self-Healing Hydrogel Based on Chitosan Derivatives and Polyoxometalate as an Antibacterial Coating,” Biomacromolecules 23 (2022): 972–982, https://doi.org/10.1021/acs.biomac.1c01368.
- 53L. M. Oliveira, L. F. Oliveira, A. F. Sonsin, et al., “Ultrafast Diesel Oil Spill Removal by Fibers From Silk-Cotton Tree: Characterization and Sorption Potential Evaluation,” Journal of Cleaner Production 263 (2020): 121448, https://doi.org/10.1016/j.jclepro.2020.121448.
- 54T. G. Nascimento, P. F. Silva, L. F. Azevedo, et al., “Polymeric Nanoparticles of Brazilian Red Propolis Extract: Preparation, Characterization, Antioxidant and Leishmanicidal Activity,” Nanoscale Research Letters 11 (2016): 301, https://doi.org/10.1186/s11671-016-1517-3.
- 55Q. Zhang, A. Yang, W. Tan, and W. Yang, “Development, Physicochemical Properties, and Antibacterial Activity of Propolis Microcapsules,” Food 12, no. 17 (2023): 3191, https://doi.org/10.3390/foods12173191.
- 56S. Mouseli, O. Natouri, A. M. Seghinsara, M. Ghorbani, A. A. Mokhtarzadeh, and F. M. Moghadam, “Physicochemical and Biological Characterization of Propolis-Loaded Composite Polyamide-6/Soybean Protein Nanofibers for Wound Healing Applications,” Colloids and Surfaces A: Physicochemical and Engineering Aspects 694 (2024): 134172, https://doi.org/10.1016/j.colsurfa.2024.134172.
- 57D. Katiyar, “Propolis: A Natural Biomaterial,” Materials Today: Proceedings (2023), in press, https://doi.org/10.1016/j.matpr.2023.05.522.
10.1016/j.matpr.2023.05.522 Google Scholar
- 58M. Murariu, A. Doumbia, L. Bonnaud, et al., “High-Performance Polylactide/ZnO Nanocomposites Designed for Films and Fibers With Special End-Use Properties,” Biomacromolecules 12 (2011): 1762–1771, https://doi.org/10.1021/bm2001445.
- 59W. Wang, Z.-Q. Chen, B. Lin, et al., “Two-Photon Polymerization-Based 3D Micro-Scaffolds Toward Biomedical Devices,” Chemical Engineering Journal 493 (2024): 152469, https://doi.org/10.1016/j.cej.2024.152469.
- 60O. Kufelt, A. El-Tamer, C. Sehring, M. Meißner, S. Schlie-Wolter, and B. N. Chichkov, “Water-Soluble Photopolymerizable Chitosan Hydrogels for Biofabrication via Two-Photon Polymerization,” Acta Biomaterialia 18 (2015): 186–195, https://doi.org/10.1016/j.actbio.2015.02.025.
- 61X. Jing, H. Fu, B. Yu, M. Sun, and L. Wang, “Two-Photon Polymerization for 3D Biomedical Scaffolds: Overview and Updates,” Frontiers in Bioengineering and Biotechnology 10 (2022): 994355, https://doi.org/10.3389/fbioe.2022.994355.
Online Version of Record before inclusion in an issue