Influence of sensory retraining on cortical reorganization in peripheral neuropathy: A systematic review
Corresponding Author
Kübra Canlı MSc
Faculty of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Türkiye
Correspondence
Kübra Canlı, Department of Physiotherapy and Rehabilitation, Hacettepe University, Ankara, Türkiye.
Email: [email protected]
Search for more papers by this authorJoris Van Oijen MSc
Department of Rehabilitation Sciences, Spine, Pain and Head Research Unit Ghent, Ghent University, Ghent, Belgium
Search for more papers by this authorJessica Van Oosterwijck PhD
Department of Rehabilitation Sciences, Spine, Pain and Head Research Unit Ghent, Ghent University, Ghent, Belgium
Pain in Motion International Research Group, Brussels, Belgium
Search for more papers by this authorMira Meeus PhD
Department of Rehabilitation Sciences, Spine, Pain and Head Research Unit Ghent, Ghent University, Ghent, Belgium
Pain in Motion International Research Group, Brussels, Belgium
Research Group MOVANT, Department of Rehabilitation Sciences and Physiotherapy (REVAKI), University of Antwerp, Antwerpen, Belgium
Search for more papers by this authorSophie Van Oosterwijck MSc
Department of Rehabilitation Sciences, Spine, Pain and Head Research Unit Ghent, Ghent University, Ghent, Belgium
Pain in Motion International Research Group, Brussels, Belgium
Research Foundation-Flanders (FWO), Brussels, Belgium
Search for more papers by this authorKayleigh De Meulemeester PhD
Department of Rehabilitation Sciences, Spine, Pain and Head Research Unit Ghent, Ghent University, Ghent, Belgium
Pain in Motion International Research Group, Brussels, Belgium
Search for more papers by this authorCorresponding Author
Kübra Canlı MSc
Faculty of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Türkiye
Correspondence
Kübra Canlı, Department of Physiotherapy and Rehabilitation, Hacettepe University, Ankara, Türkiye.
Email: [email protected]
Search for more papers by this authorJoris Van Oijen MSc
Department of Rehabilitation Sciences, Spine, Pain and Head Research Unit Ghent, Ghent University, Ghent, Belgium
Search for more papers by this authorJessica Van Oosterwijck PhD
Department of Rehabilitation Sciences, Spine, Pain and Head Research Unit Ghent, Ghent University, Ghent, Belgium
Pain in Motion International Research Group, Brussels, Belgium
Search for more papers by this authorMira Meeus PhD
Department of Rehabilitation Sciences, Spine, Pain and Head Research Unit Ghent, Ghent University, Ghent, Belgium
Pain in Motion International Research Group, Brussels, Belgium
Research Group MOVANT, Department of Rehabilitation Sciences and Physiotherapy (REVAKI), University of Antwerp, Antwerpen, Belgium
Search for more papers by this authorSophie Van Oosterwijck MSc
Department of Rehabilitation Sciences, Spine, Pain and Head Research Unit Ghent, Ghent University, Ghent, Belgium
Pain in Motion International Research Group, Brussels, Belgium
Research Foundation-Flanders (FWO), Brussels, Belgium
Search for more papers by this authorKayleigh De Meulemeester PhD
Department of Rehabilitation Sciences, Spine, Pain and Head Research Unit Ghent, Ghent University, Ghent, Belgium
Pain in Motion International Research Group, Brussels, Belgium
Search for more papers by this authorAnswer questions and earn CME credit.
Abstract
Objective
This study systematically reviewed the literature about sensory retraining effect in comparison to other rehabilitative techniques on cortical reorganization in patients with peripheral neuropathic pain.
Type
Systematic review.
Literature survey
After an electronic search of PubMed, Web of Science, and Embase, risk of bias was assessed using the revised Cochrane risk of bias tool for randomized controlled trials and the ROBINS-1 (Risk of bias in non-randomized studies-of interventions) for non-randomized studies of intervention.
Methodology
The strength of conclusion was determined using the evidence-based guideline development approach.
Synthesis
Limited evidence indicates a higher increase in cortical inhibition and a higher reduction in cortical activation during a motor task of the affected hemisphere after graded motor imagery compared to wait-list. Higher reductions in map volume (total excitability of the cortical representation) of the affected hemisphere after peripheral electrical stimulation (PES) were observed when compared to transcranial direct current stimulation (tDCS) or to sham treatment with limited evidence. No other differences in cortical excitability and representation of the affected and non-affected hemisphere were observed when comparing mirror therapy with sham therapy or tDCS, PES with sham therapy or tDCS, and graded motor imagery with wait-list.
Conclusions
Graded motor imagery and PES result in higher cortical excitability reductions of the affected hemisphere compared to wait-list, tDCS and sham treatment, respectively.
Supporting Information
Filename | Description |
---|---|
pmrj13126-sup-0001-Appendix S1.pdfPDF document, 465.1 KB | Appendix S1. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1Arezzo JC, Schaumburg HH, Spencer PS. Structure and function of the somatosensory system: a neurotoxicological perspective. Environ Health Perspect. 1982; 44: 23-30. doi:10.1289/ehp.824423
- 2Costigan M, Scholz J, Woolf CJ. Neuropathic pain: a maladaptive response of the nervous system to damage. Annu Rev Neurosci. 2009; 32: 1-32. doi:10.1146/annurev.neuro.051508.135531
- 3Jensen TS, Baron R, Haanpää M, et al. A new definition of neuropathic pain. Pain. 2011; 152: 2204-2205. doi:10.1016/j.pain.2011.06.017
- 4Bouhassira D, Lantéri-Minet M, Attal N, Laurent B, Touboul C. Prevalence of chronic pain with neuropathic characteristics in the general population. Pain. 2008; 136: 380-387. doi:10.1016/j.pain.2007.08.013
- 5Dieleman JP, Kerklaan J, Huygen F, Bouma PAD, Sturkenboom MCJM. Incidence rates and treatment of neuropathic pain conditions in the general population. Pain. 2008; 137: 681-688. doi:10.1016/j.pain.2008.03.002
- 6O'Connor AB. Neuropathic pain: quality-of-life impact, costs and cost effectiveness of therapy. Pharmacoeconomics. 2009; 27: 95-112. doi:10.2165/00019053-200927020-00002
- 7van Tulder MW, Koes BW, Bouter LM. A cost-of-illness study of back pain in The Netherlands. Pain. 1995; 62: 233-240. doi:10.1016/0304-3959(94)00272-g
- 8Foster NE, Konstantinou K, Lewis M, et al. The clinical and cost-effectiveness of stratified care for patients with sciatica: the SCOPiC randomised controlled trial protocol (ISRCTN75449581). BMC Musculoskelet Disord. 2017; 18: 172. doi:10.1186/s12891-017-1513-5
- 9Kerstman E, Ahn S, Battu S, et al. Neuropathic pain. Handb Clin Neurol. 2013; 110: 175-187. doi:10.1016/b978-0-444-52901-5.00015-0
- 10Baron R, Binder A, Wasner G. Neuropathic pain: diagnosis, pathophysiological mechanisms, and treatment. Lancet Neurol. 2010; 9: 807-819. doi:10.1016/s1474-4422(10)70143-5
- 11Sammons RP, Keck T. Adult plasticity and cortical reorganization after peripheral lesions. Curr Opin Neurobiol. 2015; 35: 136-141. doi:10.1016/j.conb.2015.08.004
- 12Kim W, Kim SK, Nabekura J. Functional and structural plasticity in the primary somatosensory cortex associated with chronic pain. J Neurochem. 2017; 141: 499-506. doi:10.1111/jnc.14012
- 13Osborne NR, Anastakis DJ, Davis KD. Peripheral nerve injuries, pain, and neuroplasticity. J Hand Ther. 2018; 31: 184-194. doi:10.1016/j.jht.2018.01.011
- 14Mohan A, Vanneste S. Adaptive and maladaptive neural compensatory consequences of sensory deprivation-from a phantom percept perspective. Prog Neurobiol. 2017; 153: 1-17, 10.1016/j.pneurobio.2017.03.010.
- 15Harris AJ. Cortical origin of pathological pain. Lancet. 1999; 354: 1464-1466. doi:10.1016/s0140-6736(99)05003-5
- 16Vartiainen N, Kirveskari E, Kallio-Laine K, Kalso E, Forss N. Cortical reorganization in primary somatosensory cortex in patients with unilateral chronic pain. J Pain. 2009; 10: 854-859. doi:10.1016/j.jpain.2009.02.006
- 17Flor H, Elbert T, Knecht S, et al. Phantom-limb pain as a perceptual correlate of cortical reorganization following arm amputation. Nature. 1995; 375: 482-484. doi:10.1038/375482a0
- 18Pleger B, Ragert P, Schwenkreis P, et al. Patterns of cortical reorganization parallel impaired tactile discrimination and pain intensity in complex regional pain syndrome. Neuroimage. 2006; 32: 503-510. doi:10.1016/j.neuroimage.2006.03.045
- 19Tecchio F, Padua L, Aprile I, Rossini PM. Carpal tunnel syndrome modifies sensory hand cortical somatotopy: a MEG study. Hum Brain Mapp. 2002; 17: 28-36. doi:10.1002/hbm.10049
- 20Deconinck FJ, Smorenburg AR, Benham A, Ledebt A, Feltham MG, Savelsbergh GJP. Reflections on mirror therapy: a systematic review of the effect of mirror visual feedback on the brain. Neurorehabil Neural Repair. 2015; 29: 349-361. doi:10.1177/1545968314546134
- 21Flor H, Denke C, Schaefer M, Grüsser S. Effect of sensory discrimination training on cortical reorganisation and phantom limb pain. Lancet. 2001; 357: 1763-1764. doi:10.1016/s0140-6736(00)04890-x
- 22Flor H, Birbaumer N. Phantom limb pain: cortical plasticity and novel therapeutic approaches. Curr Opin Anaesthesiol. 2000; 13: 561-564. doi:10.1097/00001503-200010000-00013
- 23Schabrun SM, Hillier S. Evidence for the retraining of sensation after stroke: a systematic review. Clin Rehabil. 2009; 23: 27-39. doi:10.1177/0269215508098897
- 24Gunduz ME, Pacheco-Barrios K, Bonin Pinto C, et al. Effects of combined and alone transcranial motor cortex stimulation and Mirror therapy in phantom limb pain: a randomized factorial trial. Neurorehabil Neural Repair. 2021; 35: 704-716. doi:10.1177/15459683211017509
- 25Teixeira PEP, Pacheco-Barrios K, Gunduz ME, Gianlorenço AC, Castelo-Branco L, Fregni F. Understanding intracortical excitability in phantom limb pain: a multivariate analysis from a multicenter randomized clinical trial. Neurophysiol Clin. 2021; 51: 161-173. doi:10.1016/j.neucli.2020.12.006
- 26Strauss S, Barby S, Härtner J, et al. Graded motor imagery modifies movement pain, cortical excitability and sensorimotor function in complex regional pain syndrome. Brain Commun. 2021; 3:fcab216. doi:10.1093/braincomms/fcab216
- 27Schabrun SM, Jones E, Elgueta Cancino EL. Hodges PW. Targeting chronic recurrent low back pain from the top-down and the bottom-up: a combined transcranial direct current stimulation and peripheral electrical stimulation intervention. Brain Stimul. 2014; 7: 451-459.
- 28Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. PLoS Med. 2021; 18:e1003583. doi:10.1371/journal.pmed.1003583
- 29Finnerup NB, Haroutounian S, Kamerman P, et al. Neuropathic pain: an updated grading system for research and clinical practice. Pain. 2016; 157: 1599-1606. doi:10.1097/j.pain.0000000000000492
- 30 Team TE. EndNote, EndNote. X9 ed. Clarivate Analytics; 2013.
- 31Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan-a web and mobile app for systematic reviews. Syst Rev. 2016; 5: 210. doi:10.1186/s13643-016-0384-4
- 32 Collaboration C. RoB 2: A revised Cochrane risk-of-bias tool for randomized trials. Accessed December 6, 2019.
- 33Sterne JA, Hernán MA, Reeves BC, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. Bmj. 2016; 355:i4919. doi:10.1136/bmj.i4919
- 34Meeus MGN. Health Literacy: from Reference to Review. ACCO Uitgeverij; 2016.
- 35Stevens JA, Stoykov ME. Using motor imagery in the rehabilitation of hemiparesis. Arch Phys Med Rehabil. 2003; 84: 1090-1092. doi:10.1016/s0003-9993(03)00042-x
- 36Tai RY, Zhu JD, Cheng CH, Tseng YJ, Chen CC, Hsieh YW. Cortical neural activity evoked by bilateral and unilateral mirror therapy after stroke. Clin Neurophysiol. 2020; 131: 2333-2340. doi:10.1016/j.clinph.2020.06.030
- 37Seidel S, Kasprian G, Furtner J, et al. Mirror therapy in lower limb amputees–a look beyond primary motor cortex reorganization. Rofo. 2011; 183: 1051-1057. doi:10.1055/s-0031-1281768
- 38Giummarra MJ, Gibson SJ, Georgiou-Karistianis N, Bradshaw JL. Mechanisms underlying embodiment, disembodiment and loss of embodiment. Neurosci Biobehav Rev. 2008; 32: 143-160. doi:10.1016/j.neubiorev.2007.07.001
- 39Lotze M, Grodd W, Birbaumer N, Erb M, Huse E, Flor H. Does use of a myoelectric prosthesis prevent cortical reorganization and phantom limb pain? Nat Neurosci. 1999; 2: 501-502. doi:10.1038/9145
- 40Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000; 527: 633-639.
- 41Michielsen ME, Selles RW, van der Geest JN, et al. Motor recovery and cortical reorganization after mirror therapy in chronic stroke patients: a phase II randomized controlled trial. Neurorehabil Neural Repair. 2011; 25: 223-233. doi:10.1177/1545968310385127
- 42Elgueta-Cancino E, Massé-Alarie H, Schabrun SM, Hodges PW. Electrical stimulation of back muscles does not prime the corticospinal pathway. Neuromodulation. 2019; 22: 555-563. doi:10.1111/ner.12978
- 43Cui W, Huang L, Tian Y, et al. Effect and mechanism of mirror therapy on lower limb rehabilitation after ischemic stroke: a fMRI study. NeuroRehabilitation. 2022; 51: 65-77. doi:10.3233/nre-210307
- 44Bae SHJWKK, Jeong WS, Kim KY. Effects of mirror therapy on subacute stroke patients' brain waves and upper extremity functions. J Phys Ther Sci. 2012; 24: 1119-1122.
10.1589/jpts.24.1119 Google Scholar
- 45Watson JC, Sandroni P. Central neuropathic pain syndromes. Mayo Clin Proc. 2016; 91: 372-385. doi:10.1016/j.mayocp.2016.01.017
- 46Woolf CJ. Central sensitization: implications for the diagnosis and treatment of pain. Pain. 2011; 152: S2-s15. doi:10.1016/j.pain.2010.09.030
- 47Hétu S, Gagné M, Reilly KT, Mercier C. Short-term reliability of transcranial magnetic stimulation motor maps in upper limb amputees. J Clin Neurosci. 2011; 18: 728-730. doi:10.1016/j.jocn.2010.09.011
- 48Chipchase LS, Schabrun SM, Hodges PW. Corticospinal excitability is dependent on the parameters of peripheral electric stimulation: a preliminary study. Arch Phys Med Rehabil. 2011; 92: 1423-1430. doi:10.1016/j.apmr.2011.01.011
- 49Chipchase LS, Schabrun SM, Hodges PW. Peripheral electrical stimulation to induce cortical plasticity: a systematic review of stimulus parameters. Clin Neurophysiol. 2011; 122: 456-463. doi:10.1016/j.clinph.2010.07.025
- 50Gallina A, Peters S, Neva JL, Boyd LA, Garland SJ. Selectivity of conventional electrodes for recording motor evoked potentials: an investigation with high-density surface electromyography. Muscle Nerve. 2017; 55: 828-834. doi:10.1002/mus.25412
- 51Freeman R, Baron R, Bouhassira D, Cabrera J, Emir B. Sensory profiles of patients with neuropathic pain based on the neuropathic pain symptoms and signs. Pain. 2014; 155: 367-376. doi:10.1016/j.pain.2013.10.023