Influence of biodegradation on crystallization of poly (butylene adipate-co-terephthalate)
Corresponding Author
Petr Svoboda
Department of Polymer Engineering, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 275, 762 72 Zlin, Czech Republic
Correspondence
Petr Svoboda, Department of Polymer Engineering, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 275, 762 72 Zlin, Czech Republic.
Email: [email protected]
Search for more papers by this authorMarie Dvorackova
Department of Environmental Engineering, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 275, 762 72 Zlin, Czech Republic
Search for more papers by this authorDagmar Svobodova
Faculty of Humanities, Tomas Bata University in Zlin, Stefanikova 5670, 760 01 Zlin, Czech Republic
Search for more papers by this authorCorresponding Author
Petr Svoboda
Department of Polymer Engineering, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 275, 762 72 Zlin, Czech Republic
Correspondence
Petr Svoboda, Department of Polymer Engineering, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 275, 762 72 Zlin, Czech Republic.
Email: [email protected]
Search for more papers by this authorMarie Dvorackova
Department of Environmental Engineering, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 275, 762 72 Zlin, Czech Republic
Search for more papers by this authorDagmar Svobodova
Faculty of Humanities, Tomas Bata University in Zlin, Stefanikova 5670, 760 01 Zlin, Czech Republic
Search for more papers by this authorAbstract
The biodegradation of aromatic-aliphatic biodegradable polyester poly (butylene adipate-co-terephthalate) (PBAT) was studied under mesophilic (37°C) and thermophilic (55°C) anaerobic conditions. Anaerobic sludge from municipal wastewater treatment plant was utilized as an inoculum. Non-isothermal crystallization kinetics of PBAT before and after biodegradation was explored by differential scanning calorimetry. Under mesophilic anaerobic conditions (37°C), the biodegradation after 126 days was only 2.2%, molecular weight changed from 93 000 to 25 500 g/mol, and the crystallization behavior was changed only slightly. However, biodegradation under thermophilic anaerobic conditions (55°C) caused much bigger changes: biodegradation according to biogas production reached after 126 days 8.3%, molecular weight changed from 93 000 to 9430 g/mol, and the crystallization behavior was changed significantly. While Tm increased only slightly, Tc on the other hand increased significantly for the sample after biodegradation at 55°C. Also, the crystallization rate was slower (particularly at lower cooling rates), but crystallinity was slightly higher. The diffraction pattern was observed by X-ray diffraction.
REFERENCES
- 1Bilck AP, Grossmann MVE, Yamashita F. Biodegradable mulch films for strawberry production. Polym Test. 2010; 29(4): 471-476.
- 2Mondal D, Bhowmick B, Mollick MMR, et al. Antimicrobial activity and biodegradation behavior of poly (butylene adipate-co-terephthalate)/clay nanocomposites. J Appl Polym Sci. 2014; 131(7).
- 3Weng YX, Jin YJ, Meng QY, Wang L, Zhang M, Wang YZ. Biodegradation behavior of poly (butylene adipate-co-terephthalate) (PBAT), poly (lactic acid) (PLA), and their blend under soil conditions. Polym Test. 2013; 32(5): 918-926.
- 4Saadi Z, Cesar G, Bewa H, Benguigui L. Fungal degradation of poly (butylene adipate-co-terephthalate) in soil and in compost. J Polym Environ. 2013; 21(4): 893-901.
- 5Muniyasamy S, Reddy MM, Misra M, Mohanty A. Biodegradable green composites from bioethanol co-product and poly (butylene adipate-co-terephthalate). Ind Crop Prod. 2013; 43: 812-819.
- 6Lee JJ, Jeon JY, Park JH, Jang Y, Hwang EY, Lee BY. Preparation of high-molecular-weight poly(1,4-butylene carbonate-co-terephthalate) and its thermal properties. RSC Adv. 2013; 3(48): 25823-25829.
- 7Wu CS. Utilization of peanut husks as a filler in aliphatic-aromatic polyesters: preparation, characterization, and biodegradability. Polym Degrad Stabil. 2012; 97(11): 2388-2395.
- 8Intaraksa P, Rudeekit Y, Siriyota P, Chaiwutthinan P, Tajan M, Leejarkpai T. The ultimate biodegradation of the starch based biodegradable plastics. Adv Mater Res-Switz. 2012; 506: 327-330.
- 9Wu CS. Process, characterization and biodegradability of aliphatic aromatic polyester/sisal fiber composites. J Polym Environ. 2011; 19(3): 706-713.
- 10Kijchavengkul T, Auras R, Rubino M, Selke S, Ngouajio M, Fernandez RT. Biodegradation and hydrolysis rate of aliphatic aromatic polyester. Polym Degrad Stabil. 2010; 95(12): 2641-2647.
- 11Hermann BG, Debeer L, De Wilde B, Blok K, Patel MK. To compost or not to compost: carbon and energy footprints of biodegradable materials' waste treatment. Polym Degrad Stabil. 2011; 96(6): 1159-1171.
- 12Kijchavengkul T, Auras R, Rubino M, Ngouajio M, Fernandez RT. Assessment of aliphatic-aromatic copolyester biodegradable mulch films. Part II: laboratory simulated conditions. Chemosphere. 2008; 71(9): 1607-1616.
- 13Witt U, Einig T, Yamamoto M, Kleeberg I, Deckwer WD, Muller RJ. Biodegradation of aliphatic-aromatic copolyesters: evaluation of the final biodegradability and ecotoxicological impact of degradation intermediates. Chemosphere. 2001; 44(2): 289-299.
- 14Muthuraj R, Misra M, Mohanty AK. Hydrolytic degradation of biodegradable polyesters under simulated environmental conditions. J Appl Polym Sci. 2015; 132(27).
- 15Kijchavengkul T, Auras R, Rubino M, Alvarado E, Montero JRC, Rosales JM. Atmospheric and soil degradation of aliphatic-aromatic polyester films. Polym Degrad Stabil. 2010; 95(2): 99-107.
- 16Someya Y, Kondo N, Shibata M. Biodegradation of poly (butylene adipate-co-butyleneterephthalate)/layered-silicate nanocomposites. J Appl Polym Sci. 2007; 106(2): 730-736.
- 17Stloukal P, Verney V, Commereuc S, et al. Assessment of the interrelation between photooxidation and biodegradation of selected polyesters after artificial weathering. Chemosphere. 2012; 88(10): 1214-1219.
- 18Abou-Zeid DM, Muller RJ, Deckwer WD. Biodegradation of aliphatic homopolyesters and aliphatic-aromatic copolyesters by anaerobic microorganisms. Biomacromolecules. 2004; 5(5): 1687-1697.
- 19Biundo A, Hromic A, Pavkov-Keller T, et al. Characterization of a poly (butylene adipate-co-terephthalate)-hydrolyzing lipase from Pelosinus fermentans. Appl Microbiol Biot. 2016; 100(4): 1753-1764.
- 20Perz V, Hromic A, Baumschlager A, et al. An esterase from anaerobic Clostridium hathewayi can hydrolyze aliphatic-aromatic polyesters. Environ Sci Technol. 2016; 50(6): 2899-2907.
- 21Shi B, Shlepr M, Palfery D. Effect of blend composition and structure on biodegradation of starch/Ecoflex-filled polyethylene films. J Appl Polym Sci. 2011; 120(3): 1808-1816.
- 22Perz V, Baumschlager A, Bleymaier K, et al. Hydrolysis of synthetic polyesters by Clostridium botulinum esterases. Biotechnol Bioeng. 2016; 113(5): 1024-1034.
- 23Tan FT, Cooper DG, Maric M, Nicell JA. Biodegradation of a synthetic co-polyester by aerobic mesophilic microorganisms. Polym Degrad Stabil. 2008; 93(8): 1479-1485.
- 24Marten E, Muller RJ, Deckwer WD. Studies on the enzymatic hydrolysis of polyesters. II. Aliphatic-aromatic copolyesters. Polym Degrad Stabil. 2005; 88(3): 371-381.
- 25Dong WF, Zou BS, Yan YY, Ma PM, Chen MQ. Effect of chain-extenders on the properties and hydrolytic degradation behavior of the poly (lactide)/poly (butylene adipate-co-terephthalate) blends. Int J Mol Sci. 2013; 14(10): 20189-20203.
- 26Herrera R, Franco L, Rodriguez-Galan A, Puiggali J. Characterization and degradation behavior of poly (butylene adipate-co-terephthalate)s. J Polym Sci Pol Chem. 2002; 40(23): 4141-4157.
- 27Mohanty S, Nayak SK. Aromatic-aliphatic poly (butylene adipate-co-terephthalate) bionanocomposite: influence of organic modification on structure and properties. Polym Compos. 2010; 31(7): 1194-1204.
- 28Wang XS, Yan DY, Tian GH, Li XG. Effect of molecular weight on crystallization and melting of poly (trimethylene terephthalate). 1: isothermal and dynamic crystallization. Polym Eng Sci. 2001; 41(10): 1655-1664.
- 29Ergoz E, Fatou JG, Mandelkern L. Molecular-weight dependence of crystallization kinetics of linear polyethylene. 1 Experimental Results Macromolecules. 1972; 5(2): 147-157.
- 30Shi XQ, Ito H, Kikutani T. Characterization on mixed-crystal structure and properties of poly (butylene adipate-co-terephthalate) biodegradable fibers. Polymer. 2005; 46(25): 11442-11450.
- 31Liu YF, Wang L, He Y, Fan ZY, Li SM. Non-isothermal crystallization kinetics of poly(L-lactide). Polym Int. 2010; 59(12): 1616-1621.
- 32Shen HW, Xie BH, Yang W, Yang MB. Non-isothermal crystallization of polyethylene blends with bimodal molecular weight distribution. Polym Test. 2013; 32(8): 1385-1391.
- 33Kratochvil J, Kelnar I. A simple method of evaluating non-isothermal crystallization kinetics in multicomponent polymer systems. Polym Test. 2015; 47: 79-86.
- 34Uthaipan N, Jarnthong M, Peng Z, Junhasavasdikul B, Nakason C, Thitithammawong A. Effects of cooling rates on crystallization behavior and melting characteristics of isotactic polypropylene as neat and in the TPVs EPDM/PP and EOC/PP. Polym Test. 2015; 44: 101-111.
- 35Xu WB, Ge ML, He PS. Nonisothermal crystallization kinetics of polypropylene/montmorillonite nanocomposites. J Polym Sci Pol Phys. 2002; 40(5): 408-414.
- 36Qiu ZB, Ikehara T, Nishi T. Crystallization behaviour of biodegradable poly (ethylene succinate) from the amorphous state. Polymer. 2003; 44(18): 5429-5437.
- 37Xu WB, Liang GD, Zhai HB, Tang SP, Hang GP, Pan WP. Preparation and crystallization behaviour of PP/PP-g-MAH/org-MMT nanocomposite. Eur Polym J. 2003; 39(7): 1467-1474.
- 38Martinez-Palau M, Franco L, Puiggali J. Nonisothermal crystallization studies on poly(4-hydroxybutyric acid-alt-glycolic acid). J Polym Sci Pol Phys. 2008; 46(2): 121-133.
- 39Liu FY, Xu CL, Zeng JB, Li SL, Wang YZ. Non-isothermal crystallization kinetics of biodegradable poly (butylene succinate-co-diethylene glycol succinate) copolymers. Thermochim Acta. 2013; 568: 38-45.
- 40Chen XD, Hou G, Chen YJ, Yang K, Dong YP, Zhou H. Effect of molecular weight on crystallization, melting behavior and morphology of poly (trimethylene terephalate). Polym Test. 2007; 26(2): 144-153.
- 41Fukushima K, Rasyida A, Yang MC. Biocompatibility of organically modified nanocomposites based on PBAT. J Polym Res. 2013; 20(11).
- 42Pandey A, Toda A, Rastogi S. Influence of amorphous component on melting of semicrystalline polymers. Macromolecules. 2011; 44(20): 8042-8055.