Synthesis of pyridoxine-based eagle-shaped asymmetric star polymers through seATRP
Corresponding Author
Paweł Chmielarz
Faculty of Chemistry, Department of Physical Chemistry, Rzeszów University of Technology, Al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland
Correspondence to: Paweł Chmielarz, Faculty of Chemistry, Department of Physical Chemistry, Rzeszów University of Technology, Al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland.
E-mail: [email protected]
Search for more papers by this authorCorresponding Author
Paweł Chmielarz
Faculty of Chemistry, Department of Physical Chemistry, Rzeszów University of Technology, Al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland
Correspondence to: Paweł Chmielarz, Faculty of Chemistry, Department of Physical Chemistry, Rzeszów University of Technology, Al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland.
E-mail: [email protected]
Search for more papers by this authorAbstract
The vitamin B6-based macroinitiator was prepared for the first time by the transesterification reaction of pyridoxine with 2-bromoisobutyryl bromide. A pyridoxine-based star-shaped block copolymer with a hydrophilic pyridoxine core and a dual hydrophilic poly(2-(dimethylamino)ethyl methacrylate)-block-poly(N-isopropylacrylamide) arms was synthesized for the first time via a simplified electrochemically mediated atom transfer radical polymerization, utilizing only 20 ppm of catalyst complex. The rate of the polymerizations was controlled by applying appropriate potential/current values during electrolysis to prevent the possibility of intermolecular coupling of the polymer stars. The asymmetric star polymers showed narrow molecular weight distribution (Đ = 1.09–1.13). 1H NMR spectral results confirm the formation of star-like block (co)polymers. These new vitamin B6-based eagle-shaped star (co)polymers may find biomedical and biosensor applications as pH-sensitive and thermo-sensitive drug delivery systems. Copyright © 2017 John Wiley & Sons, Ltd.
Supporting Information
Filename | Description |
---|---|
pat4062-sup-0001-Supporting Information.docxWord 2007 document , 492.6 KB |
Supporting Information – Figures showing first-order kinetic plots, GPC traces of polymers, and CV results. Fig. S1. Cyclic voltammetry results of CuIIBr2/2TPMA alone (black) and in the presence of vitamin-based PN-Br3 macroinitiator (gray). The arrow indicates the applied potential during electrolysis. Measurement conditions: [DMAEMA]/[PN-Br3 (per –Br)]/[CuIIBr2/2TPMA] = 125/1/0.0025, [DMAEMA] = 3.0 M, [CuIIBr2/2TPMA] = 0.12 mM, T = 60°C, [TBAP] = 0.2 M, Vtot = 20 ml. Table 1, entries 1 and 2. Fig. S2. Cyclic voltammetry results of CuIIBr2/2TPMA alone (black) and in the presence of PN-Br5 (gray). The arrow indicates the applied potential during electrolysis. Measurement conditions: [NIPAM]/[PN-(PDMAEMA-Br)5 (per –Br)]/[CuIIBr2/2TPMA] = 150/1/0.0030, [NIPAM] = 1.0 M, [CuIIBr2/2TPMA] = 0.02 mM, T = 60°C, [TBAP] = 0.2 M, Vtot = 18 ml. Table 1, entries 3 and 4. Fig. S3. First-order kinetic plots for preparative electrolysis under constant potential/current conditions. Reaction conditions: [DMAEMA]/[PN-Br3 (per –Br)]/[CuIIBr2/2TPMA] = 125/1/0.0025, [DMAEMA] = 3.0 M, [CuIIBr2/2TPMA] = 0.12 mM, T = 60°C, [TBAP] = 0.2 M, Vtot = 20 ml. Table 1, entries 1 and 2. Fig. S4. GPC traces of DMAEMA simplified seATRP in the presence of PN-Br3 under (a) constant potential electrolysis and (b) constant current electrolysis. GPC traces of NIPAM simplified seATRP in the presence of PN-(PDMAEMA)3 under (c) constant potential electrolysis and (d) constant current electrolysis. Fig. S5. First-order kinetic plots for preparative electrolysis under constant potential/current conditions. Reaction conditions: [NIPAM]/[PN-(PDMAEMA-Br)5 (per –Br)]/[CuIIBr2/2TPMA] = 150/1/0.0030, [NIPAM] = 1.0 M, [CuIIBr2/2TPMA] = 0.02 mM, T = 60°C, [TBAP] = 0.2 M, Vtot = 18 ml. Table 1, entries 3 and 4. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1X. Zhang, J. Xia, K. Matyjaszewski, Macromolecules 2000, 33, 2340.
- 2D. R. Robello, N. Yamaguchi, T. Blanton, C. Barnes, J. Am. Chem. Soc. 2004, 126, 8118.
- 3A. Blencowe, J. F. Tan, T. K. Goh, G. G. Qiao, Polymer 2009, 50, 5.
- 4J. T. Wiltshire, G. G. Qiao, J. Polym. Sci., Part A: Polym. Chem. 2009, 47, 1485.
- 5B.-S. Kim, H. Gao, A. A. Argun, K. Matyjaszewski, P. T. Hammond, Macromolecules 2009, 42, 368.
- 6P. G. Kadam, S. Mhaske, Des. Monomers Polym. 2011, 14, 515.
- 7F. Liu, D. Wan, T. Tang, Chin. J. Polym. Sci. 2013, 32, 51.
- 8S. Heshmat-Azad, A. Abdolmaleki, Organic Chem. Curr. Res. 2014, 3, 1.
- 9W. Wu, W. Wang, J. Li, Prog. Polym. Sci. 2015, 46, 55.
- 10J. Yu, J. Wang, C. Wang, Y. Liu, Y. Xu, C. Tang, F. Chu, Macromol. Rapid Commun. 2015, 36, 398.
- 11B. Massoumi, N. Sorkhi-Shams, M. Jaymand, R. Mohammadi, RSC Adv. 2015, 5, 21197.
- 12J. M. Liang, A. C. Feng, J. Y. Yuan, Prog. Chem. 2015, 27, 522.
- 13P. Chmielarz, Polymer 2016, 102, 192.
- 14R. Aksakal, M. Resmini, C. R. Becer, Polym. Chem. 2016, 7, 171.
- 15H. Tan, G. Zhang, Y. Lin, L. Ma, T. Tang, RSC Adv. 2016, 6, 106648.
- 16P. Chmielarz, S. Park, A. Sobkowiak, K. Matyjaszewski, Polymer 2016, 88, 36.
- 17Y. Xu, C. Pan, L. Tao, J. Polym. Sci., Part A: Polym. Chem. 2000, 38, 436.
- 18U. Tunca, B. Karlıga, S. Ertekin, A. L. Ugur, O. Sirkecioglu, G. Hizal, Polymer 2001, 42, 8489.
- 19R. Francis, B. Lepoittevin, D. Taton, Y. Gnanou, Macromolecules 2002, 35, 9001.
- 20S. Peleshanko, J. Jeong, V. V. Shevchenko, K. L. Genson, Y. Pikus, M. Ornatska, S. Petrash, V. V. Tsukruk, Macromolecules 2004, 37, 7497.
- 21X. Yu, T. Shi, G. Zhang, L. An, Polymer 2006, 47, 1538.
- 22D. Taton, Y. Gnanou, R. Matmour, S. Angot, S. Hou, R. Francis, B. Lepoittevin, D. Moinard, J. Babin, Polym. Int. 2006, 55, 1138.
- 23G.-Y. Shi, P. Zou, C.-Y. Pan, J. Polym. Sci., Part A: Polym. Chem. 2008, 46, 5580.
- 24C. Li, Z. Ge, J. Fang, S. Liu, Macromolecules 2009, 42, 2916.
- 25S. Wang, K. Zhang, Y. Chen, F. Xi, Macromolecules 2014, 47, 1993.
- 26F. Snijkers, H. Y. Cho, A. Nese, K. Matyjaszewski, W. Pyckhout-Hintzen, D. Vlassopoulos, Macromolecules 2014, 47, 5347.
- 27E. Doganci, M. Gorur, C. Uyanik, F. Yilmaz, J. Polym. Sci., Part A: Polym. Chem. 2014, 52, 3390.
- 28P. Król, P. Chmielarz, Prog. Org. Coat. 2014, 77, 913.
- 29S. Li, M. Xiao, A. Zheng, H. Xiao, Mater. Sci. Eng. C 2014, 43, 350.
- 30S. Patra, E. Roy, R. Das, P. Karfa, S. Kumar, R. Madhuri, P. K. Sharma, Biosens. Bioelectron. 2015, 73, 234.
- 31S. M. Cottica, J. Nozaki, H. S. Nakatani, C. C. Oliveira, N. E. d. Souza, J. V. Visentainer, J. Braz. Chem. Soc. 2009, 20, 496.
- 32P. Bilski, M. Y. Li, M. Ehrenshaft, M. E. Daub, C. F. Chignell, Photochem. Photobiol. 2000, 71, 129.
- 33C. Aniceto, O. Fatibello-Filho, Química Nova 1999, 22, 805.
- 34F.-J. Xu, E.-T. Kang, K.-G. Neoh, Biomaterials 2006, 27, 2787.
- 35Z. B. Zhang, X. L. Zhu, F. J. Xu, K. G. Neoh, E. T. Kang, J. Membr. Sci. 2009, 342, 300.
- 36M. Li, G. L. Li, Z. Zhang, J. Li, K.-G. Neoh, E.-T. Kang, Polymer 2010, 51, 3377.
- 37C. Scott, B. Mitrovic, S. Eastwood, G. Kinsel, Polymer 2014, 55, 3551.
- 38B.-Y. Zhang, W.-D. He, W.-T. Li, L.-Y. Li, K.-R. Zhang, H. Zhang, Polymer 2010, 51, 3039.
- 39H. Bao, L. Li, L. H. Gan, Y. Ping, J. Li, P. Ravi, Macromolecules 2010, 43, 5679.
- 40S.-Q. Chen, J.-M. Li, T.-T. Pan, P.-Y. Li, W.-D. He, Polymer 2016, 8, 38.
- 41F. A. Plamper, M. Ruppel, A. Schmalz, O. Borisov, M. Ballauff, A. H. E. Muller, Macromolecules 2007, 40, 8361.
- 42E. Yancheva, D. Paneva, V. Maximova, L. Mespouille, P. Dubois, N. Manolova, I. Rashkov, Biomacromolecules 2007, 8, 976.
- 43F. A. Plamper, J. R. McKee, A. Laukkanen, A. Nykanen, A. Walther, J. Ruokolainen, V. Aseyev, H. Tenhu, Soft Matter 2009, 5, 1812.
- 44S. J. T. Rezaei, M. R. Nabid, H. Niknejad, A. A. Entezami, Int. J. Pharm. 2012, 437, 70.
- 45X. J. Loh, J. Appl. Polym. Sci. 2013, 127, 992.
- 46X. J. Loh, S. J. Ong, Y. T. Tung, H. T. Choo, Mater. Sci. Eng. C 2013, 33, 4545.
- 47F. A. Plamper, A. Schmalz, A. H. E. Müller, J. Am. Chem. Soc. 2007, 129, 14538.
- 48M. Mitsuishi, Y. Koishikawa, H. Tanaka, E. Sato, T. Mikayama, J. Matsui, T. Miyashita, Langmuir 2007, 23, 7472.
- 49S. Gupta, M. Agrawal, P. Uhlmann, F. Simon, U. Oertel, M. Stamm, Macromolecules 2008, 41, 8152.
- 50J. Kost, R. Langer, Adv. Drug Deliv. Rev. 2001, 46, 125.
- 51D. Schmaljohann, Adv. Drug Deliv. Rev. 2006, 58, 1655.
- 52A. K. Bajpai, S. K. Shukla, S. Bhanu, S. Kankane, Prog. Polym. Sci. 2008, 33, 1088.
- 53M. Mikhail, T. Tsz Kin, P. Marcos, T. Ihor, K. Evgeny, M. Sergiy, Nanotechnology 2009, 20, 434006.
- 54A. S. Hoffman, Adv. Drug Deliv. Rev. 2013, 65, 10.
- 55D. J. Kim, K.-B. Lee, T. G. Lee, H. K. Shon, W.-J. Kim, H.-j. Paik, I. S. Choi, Small 2005, 1, 992.
- 56D. A. Z. Wever, P. Raffa, F. Picchioni, A. A. Broekhuis, Macromolecules 2012, 45, 4040.
- 57L.-Q. Wang, K. Tu, Y. Li, J. Zhang, L. Jiang, Z. Zhang, React. Funct. Polym. 2002, 53, 19.
- 58Y. Liu, Y. Cui, J. Appl. Polym. Sci. 2011, 120, 3613.
- 59D. A. Z. Wever, F. Picchioni, A. A. Broekhuis, Prog. Polym. Sci. 2011, 36, 1558.
- 60Y. Qiu, K. Park, Adv. Drug Deliv. Rev. 2001, 53, 321.
- 61G. Masci, L. Giacomelli, V. Crescenzi, Macromol. Rapid Commun. 2004, 25, 559.
- 62Y. Xia, N. A. D. Burke, H. D. H. Stöver, Macromolecules 2006, 39, 2275.
- 63K. Matyjaszewski, S. M. Jo, H.-j. Paik, D. A. Shipp, Macromolecules 1999, 32, 6431.
- 64W. A. Braunecker, K. Matyjaszewski, Prog. Polym. Sci. 2007, 32, 93.
- 65T. Pintauer, K. Matyjaszewski, Chem. Soc. Rev. 2008, 37, 1087.
- 66K. Matyjaszewski, N. V. Tsarevsky, Nat. Chem. 2009, 1, 276.
- 67V. A. Williams, T. G. Ribelli, P. Chmielarz, S. Park, K. Matyjaszewski, J. Am. Chem. Soc. 2015, 137, 1428.
- 68C. Boyer, N. A. Corrigan, K. Jung, D. Nguyen, T.-K. Nguyen, N. N. M. Adnan, S. Oliver, S. Shanmugam, J. Yeow, Chem. Rev. 2016, 116, 1803.
- 69S. Park, P. Chmielarz, A. Gennaro, K. Matyjaszewski, Angew. Chem. Int. Ed. 2015, 54, 2388.
- 70P. Chmielarz, A. Sobkowiak, K. Matyjaszewski, Polymer 2015, 77, 266.
- 71P. Chmielarz, Express Polym Lett 2016, 10, 810.
- 72P. Chmielarz, Chem. Pap. 2017, 71, 161.
- 73P. Chmielarz, Express Polym Lett 2017, 11, 140.
- 74P. Chmielarz, M. Fantin, S. Park, A. A. Isse, A. Gennaro, A. J. D. Magenau, A. Sobkowiak, K. Matyjaszewski, Prog. Polym. Sci. 2017 in press.
- 75K. Matyjaszewski, Macromolecules 2012, 45, 4015.
- 76J. H. Xia, K. Matyjaszewski, Macromolecules 1999, 32, 2434.
- 77P. Chmielarz, P. Krys, S. Park, K. Matyjaszewski, Polymer 2015, 71, 143.
- 78S. Sevimli, S. Sagnella, M. Kavallaris, V. Bulmus, T. P. Davis, Polym. Chem. 2012, 3, 2057.
- 79M. Billing, T. Rudolph, E. Täuscher, R. Beckert, F. Schacher, Polymer 2015, 7, 1526.
- 80J. Xu, J. Ye, S. Liu, Macromolecules 2007, 40, 9103.
- 81C. He, C. Zhao, X. Guo, Z. Guo, X. Chen, X. Zhuang, S. Liu, X. Jing, J. Polym. Sci., Part A: Polym. Chem. 2008, 46, 4140.
- 82C.-T. Lai, R.-H. Chien, S.-W. Kuo, J.-L. Hong, Macromolecules 2011, 44, 6546.
- 83S.-W. Kuo, J.-L. Hong, Y.-C. Huang, J.-K. Chen, S.-K. Fan, F.-H. Ko, C.-W. Chu, F.-C. Chang, J. Nanomater. 2012, 2012, 10.
- 84P. Chmielarz, S. Park, A. Simakova, K. Matyjaszewski, Polymer 2015, 60, 302.