PEGylated poly(ester amide) elastomer scaffolds for soft tissue engineering
Yingfei Xue
Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, 15261 USA
These authors contributed equally to this work.Search for more papers by this authorTatyana Yatsenko
Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15261 USA
These authors contributed equally to this work.Search for more papers by this authorAkhil Patel
Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, 15261 USA
Search for more papers by this authorDonna Beer Stolz
Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, 15261 USA
Departments of Cell Biology and Pathology, University of Pittsburgh, Pittsburgh, PA, 15261 USA
Search for more papers by this authorJulie A. Phillippi
Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15261 USA
Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA, 15219 USA
McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219 USA
Search for more papers by this authorVinayak Sant
Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, 15261 USA
Search for more papers by this authorCorresponding Author
Shilpa Sant
Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, 15261 USA
Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15261 USA
McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219 USA
Correspondence to: Shilpa Sant, PhD. Department of Pharmaceutical Sciences, University of Pittsburgh, 808A Salk Hall, 3501 Terrace Street, Pittsburgh, PA 15261, USA.
E-mail: [email protected]
Search for more papers by this authorYingfei Xue
Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, 15261 USA
These authors contributed equally to this work.Search for more papers by this authorTatyana Yatsenko
Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15261 USA
These authors contributed equally to this work.Search for more papers by this authorAkhil Patel
Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, 15261 USA
Search for more papers by this authorDonna Beer Stolz
Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, 15261 USA
Departments of Cell Biology and Pathology, University of Pittsburgh, Pittsburgh, PA, 15261 USA
Search for more papers by this authorJulie A. Phillippi
Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15261 USA
Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA, 15219 USA
McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219 USA
Search for more papers by this authorVinayak Sant
Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, 15261 USA
Search for more papers by this authorCorresponding Author
Shilpa Sant
Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, 15261 USA
Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15261 USA
McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219 USA
Correspondence to: Shilpa Sant, PhD. Department of Pharmaceutical Sciences, University of Pittsburgh, 808A Salk Hall, 3501 Terrace Street, Pittsburgh, PA 15261, USA.
E-mail: [email protected]
Search for more papers by this authorAbstract
Biodegradable synthetic elastomers with tunable mechanical and physicochemical properties remain attractive materials for soft tissue engineering. We have recently synthesized novel poly(1,3-diamino-2-hydroxypropane-co-glycerol sebacate)-co-poly(ethylene glycol) (APS-co-PEG) biodegradable elastomers. This class of PEGylated elastomers has widely tunable mechanical and degradation properties compared wtih currently available biodegradable elastomers. To further investigate the biological application of this class of elastomers, we fabricated hybrid APS-co-PEG/polycaprolactone (PCL) porous scaffolds by electrospinning. The fiber morphology, chemical composition, mechanical properties, degradability, and cytocompatibility of hybrid APS-co-PEG/PCL electrospun scaffolds were characterized. These scaffolds exhibited a wide range of mechanical properties and similar cytocompatibility to PCL scaffolds. Importantly, PEGylation inhibited platelet adhesion on all APS-co-PEG/PCL electrospun scaffolds when compared with PCL and APS/PCL scaffolds, suggesting a potential role in mitigating thrombogenicity in vivo. Additionally, APS-25PEG/PCL scaffolds were found to be mechanically analogous to human heart valve leaflet and supported attachment of human aortic valve cells. These results reveal that hybrid APS-co-PEG/PCL scaffolds may serve as promising constructs for soft tissue engineering, especially heart valve tissue engineering. Copyright © 2017 John Wiley & Sons, Ltd.
References
- 1Langer R, Tirrell DA. 2004. Nature 428(6982): 487–492.
- 2Bae H, Chu H, Edalat F, Cha JM, Sant S, Kashyap A, et al. 2014. J. Tissue Eng. Regen. Med. 8(1): 1–14.
- 3Courtney T, Sacks M, Stankus J, Guan J, Wagner W. 2006. Biomaterials 27(19): 3631–3638.
- 4Bat E, Zhang Z, Feijen J, Grijpma DW, Poot AA. 2014. Regen. Med. 9(3): 385–398.
- 5Chen QZ, Liang SL, Thouas GA. 2013. Prog. Polym. Sci. 38(3–4): 584–671.
- 6Sant S, Hwang CM, Lee S-H, Khademhosseini A. 2011. J. Tissue Eng. Regen. Med. 5(4): 283–291.
- 7Li Y, Thouas GA, Chen QZ. 2012. Rsc Adv. 2(22): 8229–8242.
- 8Liu Q, Jiang L, Shi R, Zhang L. 2012. Prog. Polym. Sci. 37(5): 715–765.
- 9Natarajan J, Dasgupta Q, Shetty SN, Sarkar K, Madras G, Chatterjee K. 2016. Acs Appl Mater Inter. 8(38): 25170–25184.
- 10Bettinger CJ, Bruggeman JP, Borenstein JT, Langer R. 2009. J. Biomed. Mater. Res. A 91A(4): 1077–1088.
- 11Bettinger CJ, Bruggeman JP, Borenstein JT, Langer RS. 2008. Biomaterials 29(15): 2315–2325.
- 12Mukundan S, Sant V, Goenka S, Franks J, Rohan LC, Sant S. 2015. Eur. Polym. J. 68: 21–35.
- 13Wang J, Boutin KG, Abdulhadi O, Personnat LD, Shazly T, Langer R, et al. 2013. Adv. Healthc. Mater. 2(10): 1329–1336.
- 14Amsden B. 2007. Soft Matter. 3(11): 1335–1348.
- 15Xue Y, Patel A, Sant V, Sant S. 2015a. Eur. Polym. J. 72: 163–179.
- 16Xue Y, Patel A, Sant V, Sant S, Semiquantitative FTIR. 2015b. Macromolecular Materials and Engineering. 301(3): 296–305.
- 17Sant S, Poulin S, Hildgen P. 2008. J. Biomed. Mater. Res. A 87A(4): 885–895.
- 18Karrer L, Duwe J, Zisch AH, Khabiri E, Cikirikcioglu M, Napoli A, et al. 2005. Int. J. Artif. Organs 28(10): 993–1002.
- 19Nagura M, Nomura Y, Gotok Y, Ckkosti Y. 2009. J. Appl. Polym. Sci. 113(4): 2462–2476.
- 20Bhardwaj N, Kundu SC. 2010. Biotechnol. Adv. 28(3): 325–347.
- 21Eslami M, Vrana NE, Zorlutuna P, Sant S, Jung S, Masoumi N, et al. 2014. J. Biomater. Appl. 29(3): 399–410.
- 22Ghosal K, Latha MS, Thomas S. 2014a. Eur. Polym. J. 60: 58–68.
- 23Ghosal K, Thomas S, Kalarikkal N, Gnanamani A. 2014b. Journal of Polymer Research. 21(5).
- 24Sant S, Khademhosseini A. 2010: 3546–8.
- 25Sant S, Iyer D, Gaharwar AK, Patel A, Khademhosseini A. 2013. Acta Biomater. 9(4): 5963–5973.
- 26Soliman S, Sant S, Nichol JW, Khabiry M, Traversa E, Khademhosseini A. 2011. J. Biomed. Mater. Res. A 96A(3): 566–574.
- 27Fu W, Liu Z, Feng B, Hu R, He X, Wang H, et al. 2014. Int. J. Nanomedicine 9: 2335–2344.
- 28Gaharwar AK, Nikkhah M, Sant S, Khademhosseini A. 2014. Biofabrication 7(1): 015001.
- 29Masoumi N, Larson BL, Annabi N, Kharaziha M, Zamanian B, Shapero KS, et al. 2014. Adv. Healthc. Mater. 3(6): 929–939.
- 30Tong Z, Sant S, Khademhosseini A, Jia X. 2011. Tissue Eng. Part A 17(21–22): 2773–2785.
- 31Kidane AG, Burriesci G, Edirisinghe M, Ghanbari H, Bonhoeffer P, Seifalian AMA. 2009. Acta Biomater. 5(7): 2409–2417.
- 32Kim ES, Ahn EH, Dvir T, Kim DH. 2014. Int. J. Nanomedicine 9(Suppl 1): 1–5.
- 33Parry D, Barnes G, Craig AA. 1978. Proceedings of the Royal Society B: Biological Sciences. 203(1152): 305–321.
- 34Pelipenko J, Kocbek P, Kristl J. 2015. Int J Pharmaceut. 484(1–2): 57–74.
- 35Pielichowski K, Flejtuch K. 2002. Polymers for Advanced Technologies. 13(10–12): 690–696.
- 36Zhou S, Deng X, Yang H. 2003. Biomaterials 24(20): 3563–3570.
- 37Carraher CE, Seymour RB. 2011. xxxvi Carraher's Polymer Chemistry, ( 8th edn), CRC Press: Boca Raton, FL; 788.
- 38Lyu S, Untereker D. 2009. Int. J. Mol. Sci. 10(9): 4033–4065.
- 39Ceonzo K, Gaynor A, Shaffer L, Kojima K, Vacanti CA, Stahl GL. 2006. Tissue Eng. 12(2): 301–308.
- 40Chapman RG, Ostuni E, Takayama S, Holmlin RE, Yan L, Whitesides GM. 2000. J. Am. Chem. Soc. 122(34): 8303–8304.
- 41Korossis SA, Booth C, Wilcox HE, Watterson KG, Kearney JN, Fisher J, et al. 2002. J. Heart Valve Dis. 11(4): 463–471.
- 42Cheung DY, Duan B, Butcher JT. 2015. Expert Opin. Biol. Ther. 15(8): 1155–1172.
- 43Mendelson K, Schoen FJ. 2006. Ann. Biomed. Eng. 34(12): 1799–1819.
- 44Sohier J, Carubelli I, Sarathchandra P, Latif N, Chester AH, Yacoub MH. 2014. Biomaterials 35(6): 1833–1844.
- 45Tseng H, Puperi DS, Kim EJ, Ayoub S, Shah JV, Cuchiara ML, et al. 2014. Tissue Eng. Part A 20(19–20): 2634–2645.
- 46Shih MF, Shau MD, Hsieh CC, Cherng JY. 2011. Molecules 16(12): 8181–8197.
- 47Ko TM, Lin JC, Cooper SL. 1993. Biomaterials 14(9): 657–664.
- 48Xu B, Li Y, Fang X, Thouas GA, Cook WD, Newgreen DF, et al. 2013. J. Mech. Behav. Biomed. Mater. 28: 354–365.
- 49Hasan A, Ragaert K, Swieszkowski W, Selimović Š, Paul A, Camci-Unal G, et al. 2014. J. Biomech. 47(9): 1949–1963.