Influence of the surface modification of alumina nanoparticles on the thermal stability and fire reaction of PMMA composites
Nicolas Cinausero
Centre des Matériaux de Grande Diffusion, Ecole des Mines d'Alès, 6 avenue de Clavières, 30319 ALES Cedex, France
Search for more papers by this authorNathalie Azema
Centre des Matériaux de Grande Diffusion, Ecole des Mines d'Alès, 6 avenue de Clavières, 30319 ALES Cedex, France
Search for more papers by this authorMarianne Cochez
Département Chimie de l'IUT de Moselle-Est, Université Paul Verlaine-Metz, Laboratoire MOPS, UMR CNRS 7132, 12 rue Victor Demange, 57500 Saint-Avold, France
Search for more papers by this authorMichel Ferriol
Département Chimie de l'IUT de Moselle-Est, Université Paul Verlaine-Metz, Laboratoire MOPS, UMR CNRS 7132, 12 rue Victor Demange, 57500 Saint-Avold, France
Search for more papers by this authorMohamed Essahli
Institut Charles Gerhardt, UMR5253 CNRS/UM2/ENSCM/UM1, Equipe Ingénierie et Architectures Macromoléculaires, Ecole Nationale Supérieure de Chimie de Montpellier, 8 Rue de l'Ecole Normale, 34296 Montpellier cedex, France
Laboratoire des Procédés de Valorisation des ressources Naturelles, des Matériaux et Environnement, Faculté des Sciences et Techniques de Settat, Km 3, route Casablanca, BP:577, 26000 Settat (Maroc), France
Search for more papers by this authorFrançois Ganachaud
Institut Charles Gerhardt, UMR5253 CNRS/UM2/ENSCM/UM1, Equipe Ingénierie et Architectures Macromoléculaires, Ecole Nationale Supérieure de Chimie de Montpellier, 8 Rue de l'Ecole Normale, 34296 Montpellier cedex, France
Search for more papers by this authorCorresponding Author
José-Marie Lopez-Cuesta
Centre des Matériaux de Grande Diffusion, Ecole des Mines d'Alès, 6 avenue de Clavières, 30319 ALES Cedex, France
Centre des Matériaux de Grande Diffusion, Ecole des Mines d'Alès, 6 avenue de Clavières 30319 ALES Cedex, France.Search for more papers by this authorNicolas Cinausero
Centre des Matériaux de Grande Diffusion, Ecole des Mines d'Alès, 6 avenue de Clavières, 30319 ALES Cedex, France
Search for more papers by this authorNathalie Azema
Centre des Matériaux de Grande Diffusion, Ecole des Mines d'Alès, 6 avenue de Clavières, 30319 ALES Cedex, France
Search for more papers by this authorMarianne Cochez
Département Chimie de l'IUT de Moselle-Est, Université Paul Verlaine-Metz, Laboratoire MOPS, UMR CNRS 7132, 12 rue Victor Demange, 57500 Saint-Avold, France
Search for more papers by this authorMichel Ferriol
Département Chimie de l'IUT de Moselle-Est, Université Paul Verlaine-Metz, Laboratoire MOPS, UMR CNRS 7132, 12 rue Victor Demange, 57500 Saint-Avold, France
Search for more papers by this authorMohamed Essahli
Institut Charles Gerhardt, UMR5253 CNRS/UM2/ENSCM/UM1, Equipe Ingénierie et Architectures Macromoléculaires, Ecole Nationale Supérieure de Chimie de Montpellier, 8 Rue de l'Ecole Normale, 34296 Montpellier cedex, France
Laboratoire des Procédés de Valorisation des ressources Naturelles, des Matériaux et Environnement, Faculté des Sciences et Techniques de Settat, Km 3, route Casablanca, BP:577, 26000 Settat (Maroc), France
Search for more papers by this authorFrançois Ganachaud
Institut Charles Gerhardt, UMR5253 CNRS/UM2/ENSCM/UM1, Equipe Ingénierie et Architectures Macromoléculaires, Ecole Nationale Supérieure de Chimie de Montpellier, 8 Rue de l'Ecole Normale, 34296 Montpellier cedex, France
Search for more papers by this authorCorresponding Author
José-Marie Lopez-Cuesta
Centre des Matériaux de Grande Diffusion, Ecole des Mines d'Alès, 6 avenue de Clavières, 30319 ALES Cedex, France
Centre des Matériaux de Grande Diffusion, Ecole des Mines d'Alès, 6 avenue de Clavières 30319 ALES Cedex, France.Search for more papers by this authorAbstract
Nanometric aluminum oxide particles were modified by phosphonic acid-based oligomers of aromatic polyester, polyether, or polydimethylsiloxane (PDMS). The grafting process was characterized by FTIR spectroscopy and thermogravimetric analysis (TGA) showing that covalent bonds must have formed between the oxide and oligomers. The highest yield of grafting was achieved in dichloromethane (CH2Cl2) solvent. Then, nanocomposites were prepared by melt-blending in a poly(methyl methacrylate) (PMMA) matrix. The best results in terms of thermal stability and flammability were obtained with the bis-phosphonicpolydimethylsiloxane-based formulation. With this latter, the peak of heat released rate (pHRR) decreased during the combustion, whereas PyGC/MS experiments led to the conclusion that PDMS-covered nanoparticles played a role in the composition of the gaseous phase as well. Copyright © 2008 John Wiley & Sons, Ltd.
REFERENCES
- 1 Du J, Zhu J, Wilkie CA, Wang J. An XPS investigation of thermal degradation and charring on poly(vinyl chloride)–clay nanocomposites. Polym. Degrad. Stab. 2002; 77: 377–381.
- 2 Laachachi A, Leroy E, Cochez M, Ferriol M, Lopez Cuesta JM. Use of oxide nanoparticles and organoclays to improve thermal stability and fire retardancy of PMMA. Polym. Degrad. Stab. 2005; 89: 344–352.
- 3 Zhu J, Uhl FM, Morgan AB, Wilkie CA. Studies on the mechanism by which the formation of nanocomposites enhances thermal stability. Chem. Mater. 2001: 13: 4649–4654.
- 4 Jang BN, Costache M, Wilkie CA. The relationship between thermal degradation behavior of polymer and the fire retardancy of polymer/clay nanocomposites. Polymer 2005; 46: 10678–10687.
- 5 Kashiwagi T, Du F, Winey KI, Grotha KM, Shields JR, Bellayer SP, Kim H, Douglas JF. Flammability properties of polymer nanocomposites with single walled nanotubes: effects of nanotube dispersion and concentration. Polymer 2005; 46: 471–481.
- 6 Costache MC, Wang D, Heidecker MJ, Manias E, Wilkie CA. The thermal degradation of PMMA nanocomposites with montmorillonite, layered double hydroxides and carbon nanotubes. Polym. Adv. Technol. 2006; 17: 272–280.
- 7 Laachachi A, Cochez M, Ferriol M, Lopez-Cuesta JM, Leroy E. Influence of TiO2 and Fe2O3 fillers on the thermal properties of PMMA. Mater. Lett. 2005; 59: 36–39.
- 8 Kashiwagi T, Morgan AB, Antonucci JM, VanLandingham MR, Harris RH, Awad WH, Shields JR. Thermal and flammability properties of a silica-PMMA nanocomposite. J. Appl. Polym. Sci. 2003: 89: 2072–2078.
- 9 Kashiwagi T, Gilman JW, Butler KM, Harris RH, Shields JR, Asano A. Flame retardant mechanism of silica gel/silica. Fire Mater. 2000; 24: 277–289.
- 10 Kashiwagi T, Shields JR, Harris RH, Davis RD. Flame- retardant mechanism of silica: effect of resin molecular weight. J. Appl. Polym. Sci. 2003; 87: 1541–1553.
- 11 Bauer F, Decker U, Ernst H, Findeisen M, Langguth H, Mehnert R, Sauerland V, Hinterwaldner R. Functionalized inorganic/organic nanocomposites as new basic raw materials for adhesives and sealants Part 2. Int. J. Adhes. Adhesive. 2006; 26: 567–570.
- 12 Guo Z, Pereira T, Choi O, Wang Y, Hahn HT. Surface functionalized alumina nanoparticle filled polymeric materials. J. Mater. Chem. 2006; 16: 2800–2808.
- 13 Sugimoto H, Daimatsu K, Nakanishi E, Ogasawara Y, Yasumura T, Inomata K. Preparation and properties of poly (methylmethacrylate)–silica hybrid materials incorporating reactive silica nanoparticles. Polymer 2006; 47: 3754–3759.
- 14 Hong RY, Qian JZ, Cao JX. Synthesis and characterization of PMMA grafted ZnO nanoparticles. Powder Technol. 2006; 163: 160–168.
- 15 Baskaran D, Mays JW, Bratcher MS. Polymer adsorption in the grafting reactions of hydroxyl terminal polymers with multi-walled carbon nanotubes. Polymer 2005; 46: 5050–5057.
- 16 Ninjbadgar T, Yamamoto S, Takano M. Thermal properties of the γ-Fe2O3/poly(methyl methacrylate) core/shell nanoparticles. Solid State Sci. 2005; 7: 33–36.
- 17 Parida SK, Mishra PK, Mishra BK. Adsorption of styryl pyridinium dyes on CTAB treated silica. Indian J. Chem. 1999; 38A: 639–645.
- 18 Essahli M, Ganachaud F, In M, Boutevin B. Phosphonic acid functionalized polyethylene glycol and derivatives. J. Appl. Polym. Sci. 2008; 108: 483–490.
- 19 Koch P, Rumpel H, Sutter P, Weis CD. The reaction of alkanephosphonic acid esters with metals. Phosporus Sulfur Relat. Elem. 1989; 44: 75–85.
- 20 Flory PJ. Statistical Mechanics of Chain Molecules Hanser/Gardner Publications, Inc.: Cincinnati/Munich. 1988.
- 21 Guerrero G, Mutin HP, Vioux A. Organically modified aluminas by grafting and sol gel processes involving phosphonate derivatives. J. Mater. Chem. 2001; 11: 3161–3165.
- 22 Mutin HP, Guerrero G, Vioux A. Organic-inorganic hybrid materials based on organophosphorus coupling molecules: from metal phosphonates to surface modification of oxides. C. R. Chimie 2003; 6: 1153–1164.
- 23 Hamieh T, Schultz J. New approach to characterise physicochemical properties of solid substrates by inverse gas chromatography at infinite dilution: II. Study of the transition temperatures of poly(methyl methacrylate) at various tacticities and of poly(methyl methacrylate) adsorbed on alumina and silica. J. Chromatogr. A 2002; 969: 27–36.
- 24 Brown JE, Kashiwagi T. Gas phase oxygen on chain scission and monomer content in bulk PMMA degraded by external thermal radiation. Polym. Degrad. Stab. 1996; 52: 1–10.
- 25 Hu Y-H, Chen C-Y, Wang C-C. Viscoelastic properties and thermal degradation kinetics of silica/PMMA nanocomposites. Polym. Degrad. Stab. 2004; 84: 545–553.
- 26 Yang F, Nelson GL. Polymer/silica nanocomposites prepared via extrusion. Polym. Adv. Technol. 2006; 17: 320–326.
- 27 Papirer E, Perrin JM, Nanse G, Fioux P. Adsorption of poly(methylmethacrylate) on an α alumina: evidence of formation of surface carboxylate bonds. Eur. Polym. J. 1994; 30: 985–991.
- 28 Liufu S-C, Xiao H-N, Li Y-P. Thermal analysis and degradation mechanism of polyacrylate/ZnO nanocomposites. Polym. Degrad. Stab. 2005; 87: 103–110.
- 29 Laachachi A, Cochez M, Leroy E, Gaudon P, Ferriol M, Lopez Cuesta JM. Effect of Al2O3 and TiO2 nanoparticles and APP on thermal stability and flame retardance of PMMA. Polym. Adv. Technol. 2006; 17: 327–334.