Flame retardancy mechanisms of metal phosphinates and metal phosphinates in combination with melamine cyanurate in glass-fiber reinforced poly(1,4-butylene terephthalate): the influence of metal cation
Ulrike Braun
BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205 Berlin, Germany
Search for more papers by this authorHorst Bahr
BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205 Berlin, Germany
Search for more papers by this authorHeinz Sturm
BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205 Berlin, Germany
Search for more papers by this authorCorresponding Author
Bernhard Schartel
BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205 Berlin, Germany
BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205 Berlin, Germany.Search for more papers by this authorUlrike Braun
BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205 Berlin, Germany
Search for more papers by this authorHorst Bahr
BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205 Berlin, Germany
Search for more papers by this authorHeinz Sturm
BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205 Berlin, Germany
Search for more papers by this authorCorresponding Author
Bernhard Schartel
BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205 Berlin, Germany
BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205 Berlin, Germany.Search for more papers by this authorAbstract
The pyrolysis and fire behavior of glass-fiber reinforced poly(butylene terephthalate) (PBT/GF) with two different metal phosphinates as flame retardants in combination with and without melamine cyanurate (MC) were analyzed by means of thermogravimetry, thermogravimetry coupled with infrared spectroscopy, flammability, and cone calorimeter tests as well as scanning electron microscopy/energy dispersive X-ray spectroscopy and X-ray fluorescence spectroscopy. In PBT/GF, dosages of 13–20% of the halogen-free flame retardant aluminum phosphinate or aluminum phosphinate in combination with MC fulfill the requirements for electrical engineering and electronics applications (UL 94 = V-0; LOI > 42%), whereas the use of the same amount of zinc phosphinate or zinc phosphinate in combination with MC does not improve the fire behavior satisfactorily (UL 94 = HB; LOI = 27–28%). The performance under forced flaming conditions (cone calorimeter) is quite similar for both of the metal phosphinates. The use of aluminum and zinc salts results in similar flame inhibition predominantly due to the release of the phosphinate compounds in the gas phase. Both metal phosphinates and MC interact with the polymer changing the decomposition characteristics. However, part of the zinc phosphinate vaporizes as a complete molecule. Because of the different decomposition behavior of the metal salts, only the aluminum phosphinate results in a small amount of thermally stable carbonaceous char. In particular, the aluminum phosphinate-terephthalate formed is more stable than the zinc phosphinate-terephthalate. The small amount of char has a crucial effect on the thermal properties and mechanical stability of the residue and thus the flammability. Copyright © 2008 John Wiley & Sons, Ltd.
REFERENCES
- 1 Levchik SV, Weil ED. Flame retardancy of thermoplastic polyesters—a review of the recent literature. Polym. Int. 2005; 54: 11–35.
- 2
Braun U,
Schartel B.
Flame retardancy mechanisms of aluminum phosphinate in combination with melamine cyanurate in glass-fiber reinforced poly(1,4-butylene terephthalate).
Macromol. Mater. Eng.
2007;
10.1002/mame.200700330
10.1002/mame.200700330 Google Scholar
- 3 Braun U, Schartel B, Fichera MA, Jäger C. Flame retardancy mechanisms of aluminium phosphinate in combination with melamine polyphosphate and zinc borate in glass-fibre reinforced polyamide 6,6. Polym. Degrad. Stab. 2007; 92: 1528–1545.
- 4 Laachachi A, Cochez M, Leroy E, Ferriol M, Lopez-Cuesta JM. Fire retardant systems in poly(methyl methacrylate): interactions between metal oxide nanoparticles and phosphinates. Polym. Degrad. Stab. 2007; 92: 61–69.
- 5 Lewin M. Synergism and catalysis in flame retardancy of polymers. Polym. Adv Technol. 2001; 12: 215–222.
- 6 Weil ED, Levchik SV. Iron compounds in flame retardancy—results and possibilities. In Recent Advances in Flame Retardancy of Polymeric Materials, vol. 14, M Lewin (ed). BCC: Norwalk, USA, 2003; 127–135.
- 7 Davis PJ, Horrocks AR, Alderson A. Do heavy metal ions sensitise flame retardant activity in ammonium polyphosphate? In Recent Advances in Flame Retardancy of Polymeric Materials, vol. 14, M Lewin (ed). BCC: Norwalk, USA, 2003; 70–85.
- 8 Lewin M, Endo M. Catalysis of intumescent flame retardancy of polypropylene by metallic compounds. Polym. Adv. Technol. 2003; 14: 3–11.
- 9 Shen KK, Olson E. Borates as fire retardants in halogen-free polymers. In Recent Advances in Flame Retardancy of Polymeric Materials, vol. 15, M Lewin (ed). BCC: Norwalk, USA, 2004; 128–138.
- 10 Jimenez M, Duquesne S, Bourbigot S. Intumescent fire protective coating: toward a better understanding of their mechanism of action. Thermochim. Acta 2006; 449: 16–26.
- 11 Samyn F, Bourigot S, Duquesne S, Delobel R. Effect of zinc borate on the thermal degradation of ammonium polyphosphate. Thermochim. Acta 2007; 456: 134–144.
- 12 Klun U, Krzan A. Degradation of polyamide-6 by using metal salts as catalyst. Polym. Adv. Technol. 2002; 13: 817–822.
- 13 Fina A, Abbenhuis HCL, Tabuani D, Camino G. Metal functionalized POSS as fire retardants in polypropylene. Polym. Degrad. Stab. 2006; 91: 2275–2281.
- 14 Suebsaeng T, Wilkie CA, Burger VT, Carter J, Brown CE. Friedel–Crafts catalysis of polyaromatic char formation during pyrolysis of poly(ethylene terephthalate) and poly(1,4-butylene terephthalate). J. Polym. Sci. Polym. Lett. Ed. 1984; 22: 625–634.
- 15 Braun U, Knoll U, Neubert D, Schartel B. Fire retarding mechanisms of red phosphorus in polybutyleneterephthalate (PBT) in combination with melamine cyanurate or zinc oxide. In Advances in the Flame Retardancy of Polymeric Materials: Current Perspectives, Presented at the FRPM'05, B Schartel (ed). Books on Demand: Norderstedt, Germany, 2007; 35–49.
- 16 Prime RB. Thermosets. In Thermal Characterisation of Polymeric Materials, EA Turi (ed). Academic press: New York, 1997; 1380–1766.
- 17 Lyon RE, Walters RN. J. Anal. Appl. Pyrol. 2004; 71: 27–46.
- 18 Camino G, Costa L, Casorati E. The oxygen index method in fire retardance studies of polymeric materials. J. Appl. Polym. Sci. 1988; 35: 1863–1876.
- 19 Schartel B, Hull TR. Development of fire retarded materials—interpretation of cone calorimeter data. Fire Mater. 2007; 31: 327–354.
- 20 Thomas LC. Interpretation of the IR Spectra of Organophosphorus Compounds. Heyden: London, 1974.
- 21 Arii T, Ichihara S, Nakagawa H, Fujii N. A kinetic study of the thermal decomposition of polyesters by controlled-rate thermogravimetry. Thermochim. Acta 1998; 319: 139–149.
- 22 Levchik SV, Bright DA, Alessio GR, Dashevsky S. Synergistic action between aryl phosphates and phenolic resin in PBT. Polym. Degrad. Stab. 2002; 77: 267–272.
- 23 Balabanovich AI. The effect of melamine on the combustion and thermal decomposition behaviour of poly(butylene terephthalate). Polym. Degrad. Stab. 2004; 84: 451–458.
- 24 Xiao J, Hu Y, Yang L, Cai Y, Song L, Chen Z, Fan W. Fire retardant synergism between melamine and triphenyl phosphate in poly(butylene terephthalate). Polym. Degrad. Stab. 2006; 91: 2093–2100.
- 25 Aufmuth W, Levchik SV, Levchik GF, Klatt M. Poly(butyl-ene terephthalate) fire retarded by 1,4-diisobutylene-2,3,5, 6-tetraxydroxy-1,4-diphosphine oxide I. Combustion and thermal decomposition. Fire Mater. 1999; 23: 1–6.
- 26 Levchik SV, Weil ED. A review on thermal decomposition and combustion of thermoplastic polyesters. Polym. Adv. Technol. 2004; 15: 691–700.
- 27 Arii T, Masuda Y. The effect of humidity on thermal decomposition of terephthalate polyester. J. Anal. Appl. Pyrol. 2004; 71: 525–536.
- 28 Almans NJJ, Kaprinidis N, Kierkels R, Steenbakkers R. Reaction mechanisms of melamine-based flame retardants. In Recent Advances in Flame Retardancy of Polymeric Materials, vol. 15, M Lewin (ed). BCC: Norwalk, USA, 2004; 117–127.
- 29 Granzow A, Ferrillo G, Wilson A. The effect of elemental red phosphorus on the thermal degradation of poly(ethylene terephthalate). J. Appl. Polym. Sci. 1977; 21: 1687–1697.
- 30 Yeh JT, Hsieh SH, Cheng YC, Yang MJ, Chen KN. Combustion and smoke emission properties of poly(ethylene terephthalate) filled with phosphorous and metallic oxides. Polym. Degrad. Stab. 1998; 61: 399–407.
- 31 Laoutid F, Ferry L, Lopez-Cuesta JM, Crespy A. Red phosphorus/aluminium oxide composites as flame retardants in recycled poly(ethylene terephthalate). Polym. Degrad. Stab. 2003; 82: 357–363.
- 32 Levchik SV, Levchik GF, Balabanovich AI, Weil ED, Klatt M. Phosphorus oxynitride: a thermally stable fire retardant additive for polyamide 6 and poly(butylene terephthalate). Angew. Makromol. Chem. 1999; 264: 48–55.
- 33 Balabanovich AI. Poly(butylene terephthalate) fire retarded by bisphenol A bis(diphenyl phosphate). J. Anal. Appl. Pyrol. 2004; 72: 229–233.
- 34 Ishikawa T, Maki I, Takeda K. Flame retardancy of poly- (butylene terephthalate) blended with phosphorous compounds. J. Appl. Polym. Sci. 2004; 92: 2326–2333.
- 35 Balabanovich AI, Engelmann J. Fire retardant and charring effect of poly(sulfonyldiphenylene phenylphosphonate) in poly(butylene terephthalate). Polym. Degrad. Stab. 2003; 79: 85–92.
- 36 Gao F, Zong L, Fang Z. Effect of a novel phosphorus-nitrogen containing intumescent flame retardant on the fire retardancy and the thermal behaviour of poly(butylene terephthalate). Polym. Degrad. Stab. 2006; 91: 1295–1299.
- 37 Botelho G, Queiros A, Gijsman P. A comparative study on the thermo-oxidative degradation of poly(ether-esters). Polym. Degrad. Stab. 2001; 73: 431–435.
- 38 Balabanovich AI, Zevaco TA, Schnabel W. Fire retardance in poly(butylene terephthalate). The effects of red phosphorus and radiation-induced cross-links. Macromol. Mater. Eng. 2004; 289: 181–190.
- 39 Nagasawa Y, Hotta M, Ozawa K. Fast thermolysis/FT-IR studies of fire-retardant melamine-cyanurate and melamine- cyanurate containing polymer. J. Anal. Appl. Pyrol. 1995; 33: 253–267.
- 40 Weil ED, Hirschler MM, Patel NG, Said MM, Shakir S. Oxygen index: correlation to other fire tests. Fire Mater. 1992; 16: 159–167.
- 41 Casu A, Camino G, DeGiorgi M, Flath D, Morone V, Zenoni R. Fire-retardant mechanistic aspects of melamine cyanurate in polyamide copolymer. Polym. Degrad. Stab. 1997; 58: 297–302.
- 42 Casu A, Camino G, De Giorgi M, Flath D, Laudi A, Morone V. Effect of glass fibres and fire retardant on the combustion behaviour of composites, glass fibres-poly(butylene terephthalate). Fire Mater. 1998; 22: 7–14.
- 43 Gijsman P, Steenbakkers R, Fürst C, Kersjes J. Differences in the flame retardant mechanism of melamine cyanurate in polyamide 6 and polyamide 66. Polym. Degrad. Stab. 2002; 78: 219–224.
- 44 Schartel B, Pawlowski KH, Lyon RE. Pyrolysis combustion flow calorimeter: a tool to assess flame retarded PC/ABS materials. Thermochim. Acta 2007; 462: 1–14.
- 45 Schartel B, Bartholmai M, Knoll U. Some comments on the main fire retardancy mechanisms in polymer nanocomposites. Polym. Adv. Technol. 2006; 17: 772–777.
- 46 Grexa O, Lübke H. Flammability parameters of wood tested on a cone calorimeter. Polym. Degrad. Stab. 2001; 74: 427–432.
- 47 Harada T. Time to ignition, heat release rate and fire endurance time of wood in cone calorimeter tests. Fire Mater. 2001; 25: 161–167.