An asymptotic preserving scheme on staggered grids for the barotropic Euler system in low Mach regimes
Thierry Goudon
Université Côte d'Azur, Inria, CNRS, LJAD, France
Search for more papers by this authorJulie Llobell
Université Côte d'Azur, CNRS, Inria, LJAD, France
Search for more papers by this authorCorresponding Author
Sebastian Minjeaud
Université Côte d'Azur, CNRS, Inria, LJAD, France
Correspondence
Sebastian Minjeaud, Université Côte d'Azur, CNRS, Inria, LJAD, France.
Email: [email protected]
Search for more papers by this authorThierry Goudon
Université Côte d'Azur, Inria, CNRS, LJAD, France
Search for more papers by this authorJulie Llobell
Université Côte d'Azur, CNRS, Inria, LJAD, France
Search for more papers by this authorCorresponding Author
Sebastian Minjeaud
Université Côte d'Azur, CNRS, Inria, LJAD, France
Correspondence
Sebastian Minjeaud, Université Côte d'Azur, CNRS, Inria, LJAD, France.
Email: [email protected]
Search for more papers by this authorAbstract
We present a new scheme for the simulation of the barotropic Euler equation in low Mach regimes. The method uses two main ingredients. First, the system is treated with a suitable time splitting strategy, directly inspired from the previous study that separates low and fast waves. Second, we adapt a numerical scheme where the discrete densities and velocities are stored on staggered grids, in the spirit of MAC methods, and with numerical fluxes derived from the kinetic approach. We bring out the main properties of the scheme in terms of consistency, stability, and asymptotic behavior, and we present a series of numerical experiments to validate the method.
REFERENCES
- 1A. Majda, Compressible fluid flow and systems of conservation laws in several space variables, Springer Science +Business Media LLC, Berlin, 1984.
10.1007/978-1-4612-1116-7 Google Scholar
- 2S. Klainerman, A. Majda, Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids, Commun. Pure Appl. Math. vol. 34 (1981) pp. 481–524.
- 3S. Klainerman, A. Majda, Compressible and incompressible fluids, Commun. Pure Appl. Math. vol. 35 (1982) pp. 629–651.
- 4S. Ukai, The incompressible limit and the initial layer of the compressible Euler equation, J. Math. Kyoto Univ. vol. 26 (1986) pp. 323–331.
- 5T. Alazard, A minicourse on the low Mach number limit, Discrete Contin. Dyn. Syst. Ser. S vol. 1 (2008) pp. 365–404.
- 6H. Guillard, A. Murrone, On the behavior of upwind schemes in the low Mach number limit. II: Godunov type schemes, Comput. Fluids vol. 33 (2004) pp. 655–675.
- 7H. Guillard, C. Viozat, On the behavior of upwind schemes in the low Mach number limit, Comput. Fluids vol. 28 (1999) pp. 63–86.
- 8W. Barsukow et al., A numerical scheme for the compressible low-Mach number regime of ideal fluid dynamics, J. Sci. Comput. vol. 72 (2017) pp. 623–646.
- 9S. Dellacherie, Analysis of Godunov type schemes applied to the compressible Euler system at low Mach number, J. Comput. Phys. vol. 229 (2010) pp. 978–1016.
- 10S. Dellacherie, Etude et discrétisation de modèles cinétiques et de modèles fluides à bas nombre de Mach, Habilitation à diriger les recherches, Université Pierre et Marie Curie, Paris VI, 2011.
- 11S. Dellacherie et al., Construction of modified Godunov-type schemes accurate at any Mach number for the compressible Euler system, Math. Models Methods Appl. Sci. vol. 26 (2016) pp. 2525–2615.
- 12S. Dellacherie, P. Omnes, F. Rieper, The influence of cell geometry on the Godunov scheme applied to the linear wave equation, J. Comput. Phys. vol. 229 (2010) pp. 5315–5338.
- 13H. Guillard, B. Nkonga, “ On the behaviour of upwind schemes in the low Mach number limit: A review,” in Handbook of numerical methods for hyperbolic problems, Handb. Numer. Anal., vol. 18, Elsevier, North-Holland, Amsterdam, 2017, pp. 203–231.
10.1016/bs.hna.2016.09.002 Google Scholar
- 14E. Turkel, Preconditioned methods for solving the incompressible and low speed compressible equations, J. Comput. Phys. vol. 72 (1987) pp. 189–209.
- 15S. Jin, Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations, SIAM J. Sci. Comput. vol. 21 (1999) pp. 441–454.
- 16S. Jin, Asymptotic preserving (AP) schemes for multiscale kinetic and hyperbolic equations: A review, Riv. Mat. Univ. Parma vol. 3 (2012) pp. 177–216.
- 17P. Degond, M. Tang, All speed scheme for the low Mach number limit of the isentropic Euler equations, Comm. Comput. Phys. vol. 10 (2011) pp. 1–31.
- 18G. Dimarco, R. Loubère, M.-H. Vignal, Study of a new asymptotic preserving scheme for the Euler system in the low Mach number limit, SIAM J. Sci. Comput. vol. 39 (2017) pp. A2099–A2128.
- 19J. Haack, S. Jin, J.-G. Liu, An all-speed asymptotic-preserving method for the isentropic Euler and Navier–Stokes equations, Commun. Comput. Phys. vol. 12 (2012) pp. 955–980.
- 20R. Klein, Semi-implicit extension of a Godunov-type scheme based on low Mach number asymptotics. I. One-dimensional flow, J. Comput. Phys. vol. 121 (1995) pp. 213–237.
- 21S. Noelle et al., A weakly asymptotic preserving low Mach number scheme for the Euler equations of gas dynamics, SIAM J. Sci. Comput. vol. 36 (2014) pp. B989–B1024.
- 22F. Berthelin, T. Goudon, S. Minjeaud, Kinetic schemes on staggered grids for barotropic Euler models: Entropy-stability analysis, Math. Comput. vol. 84 (2015) pp. 2221–2262.
- 23F. H. Harlow, J. E. Welch, Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface, Phys. Fluids vol. 8 (1965) pp. 2182–2189.
- 24F. Berthelin, T. Goudon, S. Minjeaud, Multifluid flows: A kinetic approach, J. Sci. Comput. vol. 66 (2016) pp. 792–824.
- 25
L. Gastaldo R. Herbin, W. Kheriji, C. Lapuerta, J.-C. Latche, “ Staggered discretizations, pressure correction schemes and all speed barotropic flows,” in Finite volumes for complex applications VI, Problems and perspectives, Prague, Czech Republic, vol. 4, Springer, Heidelberg, 2011, pp. 839–855.
10.1007/978-3-642-20671-9_86 Google Scholar
- 26R. Herbin, W. Kheriji, J.-C. Latché, Staggered schemes for all speed flows, ESAIM:Proc vol. 35 (2012) pp. 122–150.
10.1051/proc/201235008 Google Scholar
- 27R. Herbin, J.-C. Latché, T. T. Nguyen, “ Explicit staggered schemes for the compressible Euler equations,” in Applied mathematics in Savoie—AMIS 2012: Multiphase flow in industrial and environmental engineering, ESAIM Proc., vol. 40, EDP Sci., Les Ulis, 2013, pp. 83–102.
10.1051/proc/201340006 Google Scholar
- 28C. Zaza, Contribution à la résolution numérique d'écoulements à tout nombre de Mach et au couplage fluide-poreux en vue de la simulation d'écoulements diphasiques homogénéisés dans les composants nucléaires. PhD thesis, Univ. Aix-Marseille, 2015.
- 29F. Coron, B. Perthame, Numerical passage from kinetic to fluid equations, SIAM J. Numer. Anal. vol. 28 (1991) pp. 26–42.
- 30S. M. Deshpande, Kinetic theory based new upwind methods for inviscid compressible flows. In AIAA 24th Aerospace Science Meeting, January 6–9, 1986, Nevada, USA, 1986. AIAA paper 86-0275.
- 31J. Llobell, Staggered discretization for conservation laws of gas dynamics. PhD thesis, Université Côte d'Azur, Inria, CNRS, LJAD, 2018.
- 32
F. Bouchut Y. Jobic, R. Natalini, R. Occelli, V. Pavan, Second-order entropy satisfying BGK-FVS schemes for incompressible Navier-stokes equations, SMAI J. Comput. Math vol. 4 (2018), pp. 1–56.
10.5802/smai-jcm.28 Google Scholar
- 33H. Zakerzadeh, S. Noelle, A note on the stability of implicit–explicit flux-splittings for stiff systems of hyperbolic conservation laws. Technical report, Institut für Geometrie und Praktische Mathematik, RWTH Aachen, 2016. Report # 449.
- 34A. Majda, R. Pego, Stable viscosity matrices for systems of conservation laws, J. Diff. Eqs. vol. 56 (1985) pp. 229–262.
- 35 J. Schütz, S. Noelle, Flux splitting for stiff equations: A notion on stability, J. Sci. Comput. vol. 64 (2015) pp. 522–540.
- 36F. Boyer, Analysis of the upwind finite volume method for general initial- and boundary-value transport problems, IMA J. Numer. Anal. vol. 32(4) (2012) pp. 1404–1439.
- 37
R. LeVeque, Numerical methods for conservation laws, Birkhauser, Basel, 1992.
10.1007/978-3-0348-8629-1 Google Scholar
- 38K. Kaiser et al., A new stable splitting for the isentropic Euler equations, J. Sci. Comput. vol. 70 (2017) pp. 1390–1407.
- 39E. Weinan, C.-W. Shu, A numerical resolution study of high order essentially non-oscillatory schemes applied to incompressible flow, J. Comput. Phys. vol. 110 (1993) pp. 39–46.