Adaptive radial basis function–generated finite differences method for contact problems
Jure Slak
Parallel and Distributed Systems Laboratory, Jožef Stefan Institute, Ljubljana, Slovenia
Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
Search for more papers by this authorCorresponding Author
Gregor Kosec
Parallel and Distributed Systems Laboratory, Jožef Stefan Institute, Ljubljana, Slovenia
Gregor Kosec, Parallel and Distributed Systems Laboratory, Jožef Stefan Institute, Ljubljana, Slovenia.
Email: [email protected]
Search for more papers by this authorJure Slak
Parallel and Distributed Systems Laboratory, Jožef Stefan Institute, Ljubljana, Slovenia
Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
Search for more papers by this authorCorresponding Author
Gregor Kosec
Parallel and Distributed Systems Laboratory, Jožef Stefan Institute, Ljubljana, Slovenia
Gregor Kosec, Parallel and Distributed Systems Laboratory, Jožef Stefan Institute, Ljubljana, Slovenia.
Email: [email protected]
Search for more papers by this authorPresent Address:
Gregor Kosec, Department E6, Jožef Stefan Institute, Jamova ulica 39, 1000 Ljubljana, Slovenia
Summary
This paper proposes an original adaptive refinement framework using radial basis function–generated finite differences method. Node distributions are generated with a Poisson disc sampling–based algorithm from a given continuous density function, which is altered during the refinement process based on the error indicator. All elements of the proposed adaptive strategy rely only on meshless concepts, which leads to great flexibility and generality of the solution procedure. The proposed framework is tested on four gradually more complex contact problems. First, a disc under pressure is considered and the computed stress field is compared to the closed-form solution of the problem to assess the behaviour of the algorithm and the influence of free parameters. Second, a Hertzian contact problem is studied to analyse the proposed algorithm with an ad hoc error indicator and to test both refinement and derefinement. A contact problem, typical for fretting fatigue, with no known closed-form solution is considered and solved next. It is demonstrated that the proposed methodology produces results comparable with finite element method without the need for manual refinement or any human intervention. In the last case, generality of the proposed approach is demonstrated by solving a three-dimensional Boussinesq's problem.
REFERENCES
- 1Kansa EJ. Multiquadrics—a scattered data approximation scheme with applications to computational fluid-dynamics—I surface approximations and partial derivative estimates. Comput Math Appl. 1990; 19(8-9): 127-145. https://doi.org/10.1016/0898-1221(90)90270-T
- 2Franke C, Schaback R. Solving partial differential equations by collocation using radial basis functions. Appl Math Comput. 1998; 93(1): 73-82. https://doi.org/10.1016/s0096-3003(97)10104-7
- 3Šarler B. From global to local radial basis function collocation method for transport phenomena. In: Advances in Meshfree Techniques. Dordrecht, The Netherlands: Springer; 2007; 257-282.
10.1007/978-1-4020-6095-3_14 Google Scholar
- 4Prax C, Sadat H, Salagnac P. Diffuse approximation method for solving natural convection in porous media. Transp Porous Media. 1996; 22: 215-223. https://doi.org/10.1007/bf01143516
- 5Tolstykh AI, Shirobokov DA. On using radial basis functions in a finite difference mode with applications to elasticity problems. Computational Mechanics. 2003; 33(1): 68-79. https://doi.org/10.1007/s00466-003-0501-9
- 6Fornberg B, Flyer N. Solving PDEs with radial basis functions. Acta Numerica. 2015; 24: 215-258. https://doi.org/10.1017/S0962492914000130
- 7Bayona V, Flyer N, Fornberg B, Barnett GA. On the role of polynomials in RBF-FD approximations: II. Numerical solution of elliptic PDEs. J Comput Phys. 2017; 332: 257-273. https://doi.org/10.1016/j.jcp.2016.12.008
- 8Slak J, Kosec G. Refined meshless local strong form solution of Cauchy–Navier equation on an irregular domain. Eng Anal Bound Elem. 2019; 100: 3-13. https://doi.org/10.1016/j.enganabound.2018.01.001
- 9Zienkiewicz OC, Taylor RL. The Finite Element Method: Solid Mechanics. Oxford, UK: Butterworth-Heinemann; 2000.
- 10Chen Y, Lee JD, Eskandarian A. Meshless Methods in Solid Mechanics. New York, NY: Springer; 2006.
- 11Mavrič B, Šarler B. Local radial basis function collocation method for linear thermoelasticity in two dimensions. Int J Numer Methods Heat Fluid Flow. 2015; 25(6): 1488-1510. https://doi.org/10.1108/hff-11-2014-0359
- 12Liu GR, Gu YT. An Introduction to Meshfree Methods and Their Programming. Dordrecht, The Netherlands:Springer; 2005.
- 13Belytschko T, Lu YY, Gu L. Element-free Galerkin methods. Int J Numer Methods Eng. 1994; 37(2): 229-256. https://doi.org/10.1002/nme.1620370205
- 14Atluri SN, Zhu T. A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics. Computational Mechanics. 1998; 22(2): 117-127. https://doi.org/10.1007/s004660050346
- 15Oñate E, Perazzo F, Miquel J. A finite point method for elasticity problems. Comput Struct. 2001; 79(22-25): 2151-2163. https://doi.org/10.1016/s0045-7949(01)00067-0
- 16Kosec G. A local numerical solution of a fluid-flow problem on an irregular domain. Adv Eng Softw. 2018; 120: 36-44. https://doi.org/10.1016/j.advengsoft.2016.05.010
- 17Fornberg B, Flyer N. Fast generation of 2-D node distributions for mesh-free PDE discretizations. Comput Math Appl. 2015; 69(7): 531-544. https://doi.org/10.1016/j.camwa.2015.01.009
- 18Zienkiewicz OC, Zhu JZ. A simple error estimator and adaptive procedure for practical engineering analysis. Int J Numer Methods Eng. 1987; 24(2): 337-357. https://doi.org/10.1002/nme.1620240206
- 19Thimnejad M, Fallah N, Khoei AR. Adaptive refinement in the meshless finite volume method for elasticity problems. Comput Math Appl. 2015; 69(12): 1420-1443. https://doi.org/10.1016/j.camwa.2015.03.023
- 20Tang Q, Zhang GY, Liu GR, Zhong ZH, He ZC. A three-dimensional adaptive analysis using the meshfree node-based smoothed point interpolation method (NS-PIM). Eng Anal Bound Elem. 2011; 35(10): 1123-1135. https://doi.org/10.1016/j.enganabound.2010.05.019
- 21Angulo A, Pozo LP, Perazzo F. A posteriori error estimator and an adaptive technique in meshless finite points method. Eng Anal Bound Elem. 2009; 33(11): 1322-1338. https://doi.org/10.1016/j.enganabound.2009.06.004
- 22Oanh DT, Davydov O, Phu HX. Adaptive RBF-FD method for elliptic problems with point singularities in 2D. Appl Math Comput. 2017; 313: 474-497. https://doi.org/10.1016/j.amc.2017.06.006
- 23Park S-H, Kwon K-C, Youn S-K. A posterior error estimates and an adaptive scheme of least-squares meshfree method. Int J Numer Methods Eng. 2003; 58(8): 1213-1250. https://doi.org/10.1002/nme.817
- 24Afshar MH, Naisipour M, Amani J. Node moving adaptive refinement strategy for planar elasticity problems using discrete least squares meshless method. Finite Elem Anal Des. 2011; 47(12): 1315-1325. https://doi.org/10.1016/j.finel.2011.07.003
- 25Davydov O, Oanh DT. Adaptive meshless centres and RBF stencils for Poisson equation. J Comput Phys. 2011; 230(2): 287-304. https://doi.org/10.1016/j.jcp.2010.09.005
- 26Kosec G, Šarler B. H-adaptive local radial basis function collocation meshless method. Comput Mater Continua. 2011; 26(3): 227-253. https://doi.org/10.3970/cmc.2011.026.227
- 27Stevens D, Power H, Lees M, Morvan H. The use of PDE centres in the local RBF Hermitian method for 3D convective-diffusion problems. J Comput Phys. 2009; 228(12): 4606-4624. https://doi.org/10.1016/j.jcp.2009.03.025
- 28Libre AL, Emdadi A, Kansa EJ, Shekarchi M, Rahimian M. A fast adaptive wavelet scheme in RBF collocation for nearly singular potential PDEs. Comput Model Eng Sci. 2008; 38(3): 263-284. https://doi.org/10.3970/cmes.2008.038.263
- 29Liu GR, Kee BBT, Chun L. A stabilized least-squares radial point collocation method (LS-RPCM) for adaptive analysis. Comput Methods Appl Mech Eng. 2006; 195(37-40): 4843-4861. https://doi.org/10.1016/j.cma.2005.11.015
- 30Afshar MH, Amani J, Naisipour M. A node enrichment adaptive refinement in Discrete Least Squares Meshless method for solution of elasticity problems. Eng Anal Bound Elem. 2012; 36(3): 385-393. https://doi.org/10.1016/j.enganabound.2011.08.012
- 31Rabczuk T, Belytschko T. A three-dimensional large deformation meshfree method for arbitrary evolving cracks. Comput Methods Appl Mech Eng. 2007; 196(29-30): 2777-2799. https://doi.org/10.1016/j.cma.2006.06.020
- 32Driscoll TA, Heryudono ARH. Adaptive residual subsampling methods for radial basis function interpolation and collocation problems. Comput Math Appl. 2007; 53(6): 927-939. https://doi.org/10.1016/j.camwa.2006.06.005
- 33Fornberg B, Zuev J. The Runge phenomenon and spatially variable shape parameters in RBF interpolation. Comput Math Appl. 2007; 54(3): 379-398. https://doi.org/10.1016/j.camwa.2007.01.028
- 34Pereira K, Bordas S, Tomar S, et al. On the convergence of stresses in fretting fatigue. Materials. 2016; 9(8): 639. https://doi.org/10.3390/ma9080639
- 35 Medusa: coordinate free implementation of meshless methods. http://e6.ijs.si/medusa/. Accessed February 19, 2019.
- 36Slak J, Kosec G. Paper repository with algorithms and research data. https://gitlab.com/e62Lab/2018AdaptivePaper. Accessed February 19, 2019.
- 37Schaback R, Wendland H. Characterization and construction of radial basis functions. In: N Dyn, D Leviatan, D Levin, A Pinkus, eds. Multivariate Approximation and Applications. Cambridge, UK: Cambridge University Press; 2001: 1-24.
10.1017/CBO9780511569616.002 Google Scholar
- 38Buhmann MD. Radial Basis Functions: Theory and Implementations. Cambridge, UK: Cambridge University Press; 2003. Cambridge Monographs on Applied and Computational Mathematics; vol. 12.
- 39Flyer N, Lehto E. Rotational transport on a sphere: local node refinement with radial basis functions. J Comput Phys. 2010; 229(6): 1954-1969. https://doi.org/10.1016/j.jcp.2009.11.016
- 40Flyer N, Fornberg B, Bayona V, Barnett GA. On the role of polynomials in RBF-FD approximations: I. Interpolation and accuracy. J Comput Phys. 2016; 321: 21-38. https://doi.org/10.1016/j.jcp.2016.05.026
- 41Wei L-Y. Parallel Poisson disk sampling. ACM Trans Graph. 2008; 27(3). Article No. 20. https://doi.org/10.1145/1360612.1360619
- 42Slak J, Kosec G. On generation of node distributions for meshless PDE discretizations. 2018. Preprint. https://arxiv.org/abs/1812.03160
- 43Franke R. Scattered data interpolation: tests of some methods. Math Comput. 1982; 38(157): 181-200. https://doi.org/10.1090/s0025-5718-1982-0637296-4
- 44Wendland H. Scattered Data Approximation.Cambridge, UK: Cambridge University Press; 2004. Cambridge Monographs on Applied and Computational Mathematics; vol. 17.
10.1017/CBO9780511617539 Google Scholar
- 45Sadd MH. Elasticity: Theory, Applications, and Numerics. 2nd ed. Burlington, MA: Elsevier/Academic Press; 2009.
- 46Hecht F. New development in FreeFem++. J Numer Math. 2012; 20(3-4): 251-265. https://doi.org/10.1515/jnum-2012-0013
- 47Slaughter WS. Concentrated normal traction acting at the boundary of a semi-infinite body. In: The Linearized Theory of Elasticity. Boston, MA: Birkhäuser; 2002; 351-352.
10.1007/978-1-4612-0093-2 Google Scholar