Modelling complex high speed multimaterial evolutions using a single mesh multivelocity strategy
Corresponding Author
G. Folzan
Laboratoire de Mecanique des Solides, Ecole Polytechnique, UMR7649, F-91128 Palaiseau Cedex, France
CEA, DAM, DIF, F-91297 Arpajon, France
Correspondence to: G. Folzan, DM2S/SEMT/LM2S, Bat 607, PC 115, CEA Saclay, Route Nationale, 91400 Gif-sur-Yvette, France.
E-mail: [email protected]
Search for more papers by this authorP. Le Tallec
Laboratoire de Mecanique des Solides, Ecole Polytechnique, UMR7649, F-91128 Palaiseau Cedex, France
Search for more papers by this authorCorresponding Author
G. Folzan
Laboratoire de Mecanique des Solides, Ecole Polytechnique, UMR7649, F-91128 Palaiseau Cedex, France
CEA, DAM, DIF, F-91297 Arpajon, France
Correspondence to: G. Folzan, DM2S/SEMT/LM2S, Bat 607, PC 115, CEA Saclay, Route Nationale, 91400 Gif-sur-Yvette, France.
E-mail: [email protected]
Search for more papers by this authorP. Le Tallec
Laboratoire de Mecanique des Solides, Ecole Polytechnique, UMR7649, F-91128 Palaiseau Cedex, France
Search for more papers by this author
REFERENCES
- 1Piperno S, Farhat C, Larrouturou B. Partitioned procedures for the transient solution of coupled aeroelastic problems. Computer Methods in Applied Mechanics and Engineering 1995; 124: 79–111.
- 2Tallec PL, Mouro J. Fluid structure interaction with large structural displacements. Computer Methods in Applied Mechanics and Engineering 2001; 190(24-25): 3039–3068.
- 3Farhat C, Lesoinne M, Le Tallec P. Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: momentum and energy conservation, optimal discretization and application to aeroelasticity. Computer Methods in Applied Mechanics and Engineering 1998; 157: 95–114.
- 4Fedkiw RP, Aslam T, Merriman B, Osher S. A non-oscillatory eulerian approach to interfaces in multimaterial flows (the ghost fluid method). Journal of Computational Physics 1999; 152(2): 457–492.
- 5Flament J, Tallec PL, Perlat J-P. Méthode de couplage euler-lagrange pour la dynamique rapide. 10e Colloque National en Calcul des Structures, Giens, France, 2011.
- 6Glowinski R, Pan T-W, Periaux J. A fictitious domain method for Dirichlet problem and applications. Computer Methods in Applied Mechanics and Engineering 1994; 111(3-4): 283–303.
- 7Olovsson L. On the arbitrary Lagrangian–Eulerian finite element method. PhD Thesis, Linköpings University, Linköping, 2000.
- 8Sanders J, Laursen T, Puso M. A Nitsche embedded mesh method. Computational Mechanics 2012; 49: 243–257, DOI: 10.1007/s00466-011-0641-2.
- 9Zhang L, Gerstenberger A, Wang X, Liu WK. Immersed finite element method. Computer Methods in Applied Mechanics and Engineering 2004; 193(21–22): 2051–2067.
- 10Wang K, Grétarsson J, Main A, Farhat C. Computational algorithms for tracking dynamic fluid–structure interfaces in embedded boundary methods. International Journal for Numerical Methods in Fluids 2012; 70(4): 515–535.
- 11Benson DJ. A mixture theory for contact in multi-material Eulerian formulations. Computer Methods in Applied Mechanics and Engineering 1997; 140(1-2): 59–86.
- 12Barlow AJ. A compatible finite element multi-material ALE hydrodynamics algorithm. International Journal for Numerical Methods in Fluids 2008; 56(8): 953–964.
- 13Benson DJ, Okazawa S. Contact in a multi-material eulerian finite element formulation. Computer Methods in Applied Mechanics and Engineering 2004; 193(39–41): 4277–4298.
- 14Shashkov M. Closure models for multimaterial cells in arbitrary Lagrangian-Eulerian hydrocodes. International Journal for Numerical Methods in Fluids 2008; 56(8): 1497–1504.
- 15Vitali E, Benson DJ. An extended finite element formulation for contact in multi-material arbitrary Lagrangian-Eulerian calculations. International Journal for Numerical Methods in Engineering 2006; 67(10): 1420–1444.
- 16Gerstenberger A, Wall W. An extended finite element method/Lagrange multiplier based approach for fluid-structure interaction. Computer Methods in Applied Mechanics and Engineering 2008; 197(19): 1699–1714.
- 17Dambakizi F. Modélisation thermo-mécanique multi-échelles des frottements sous chocs, PhD Thesis, École Polytechnique, Palaiseau, 2009.
- 18Simó JC, Hughes TJR. Computational Inelasticity, Interdisciplinary Applied Mathematics: Mechanics and Materials, Springer, New York, 1998.
- 19Hirt CW, Nichols BD. Volume of fluid (VoF) method for the dynamics of free boundaries. Journal of Computational Physics 1981; 39(1): 201–225.
- 20Youngs DL. Time dependent multi-material flow with large fluid distortion. Numerical Methods for Fluid Dynamics 1982; 24: 273–285.
- 21Babuska I. The finite element method with Lagrangian multipliers. Numerische Mathematik 1973; 20: 179–192, DOI: 10.1007/BF01436561.
- 22Dolbow J, Franca LP. Residual-free bubbles for embedded Dirichlet problems. Computer Methods in Applied Mechanics and Engineering 2008; 197(45-48): 3751–3759.
- 23Mourad HM, Dolbow J, Harari I. A bubble-stabilized finite element method for Dirichlet constraints on embedded interfaces. International Journal for Numerical Methods in Engineering 2007; 69(4): 772–793.
- 24Annavarapu C, Hautefeuille M, Dolbow JE. A robust Nitsche's formulation for interface problems. Computer Methods in Applied Mechanics and Engineering 2012; 225–228(0): 44–54.
- 25Becker R, Burman E, Hansbo P. A Nitsche extended finite element method for incompressible elasticity with discontinuous modulus of elasticity. Computer Methods in Applied Mechanics and Engineering 2009; 198(41–44): 3352–3360.
- 26Wohlmuth BI. Discretization Methods and Iterative Solvers Based on Domain Decomposition, Lecture Notes in Computational Science and Engineering. Springer: Berlin, 2001.
10.1007/978-3-642-56767-4 Google Scholar
- 27Hauret P, Tallec PL. A discontinuous stabilized mortar method for general 3d elastic problems. Computer Methods in Applied Mechanics and Engineering 2007; 196(49-52): 4881–4900.
- 28Zukas JA. Introduction to Hydrocodes, Studies in Applied Mechanics, Elsevier: Amsterdam; Boston, 2004.
- 29Jun BI. A Modified Equipotential Method for Grid Relaxation, Lawrence Livermore National Laboratory Report, Livermore, UCRL-JC-138277, March 21, 2000.
- 30Knupp P, Margolin LG, Shashkov M. Reference jacobian optimization-based rezone strategies for arbitrary Lagrangian Eulerian methods. Journal of Computational Physics 2002; 176(1): 93–128.
- 31Tipton R. Grid optimization by equipotential relaxation, Lawrence Livermore National Laboratory, Livermore, 1992.
- 32Dukowicz JK. Conservative rezoning (remapping) for general quadrilateral meshes. Journal of Computational Physics 1984; 54(3): 411–424.
- 33Ramshaw JD. Conservative rezoning algorithm for generalized two-dimensional meshes. Journal of Computational Physics 1985; 59(2): 193–199.
- 34Lemons DS, Lund CM. Thermodynamics of high temperature, Mie–Gruneisen solids. American Journal of Physics 1999; 67(12): 1105–1108, DOI: 10.1119/1.19091.