Electron transport enhanced molecular dynamics for metals and semi-metals†
Corresponding Author
Reese E. Jones
Mechanics of Materials Department, Sandia National Laboratories, P. O. Box 969, Livermore, CA 94551, U.S.A.
Mechanics of Materials Department, Sandia National Laboratories, P. O. Box 969, Livermore, CA 94551, U.S.A.Search for more papers by this authorJeremy A. Templeton
Thermal/Fluid Science and Engineering Department, Sandia National Laboratories, P. O. Box 969, Livermore, CA 94551, U.S.A.
Search for more papers by this authorGregory J. Wagner
Thermal/Fluid Science and Engineering Department, Sandia National Laboratories, P. O. Box 969, Livermore, CA 94551, U.S.A.
Search for more papers by this authorDavid Olmsted
Computational Materials Science and Engineering Department, Sandia National Laboratories, P. O. Box 5800, Albuquerque, NM 87185, U.S.A.
Search for more papers by this authorNomand A. Modine
Center for Integrated Nanotechnologies, Sandia National Laboratories, P. O. Box 5800, Albuquerque, NM 87185, U.S.A.
Search for more papers by this authorCorresponding Author
Reese E. Jones
Mechanics of Materials Department, Sandia National Laboratories, P. O. Box 969, Livermore, CA 94551, U.S.A.
Mechanics of Materials Department, Sandia National Laboratories, P. O. Box 969, Livermore, CA 94551, U.S.A.Search for more papers by this authorJeremy A. Templeton
Thermal/Fluid Science and Engineering Department, Sandia National Laboratories, P. O. Box 969, Livermore, CA 94551, U.S.A.
Search for more papers by this authorGregory J. Wagner
Thermal/Fluid Science and Engineering Department, Sandia National Laboratories, P. O. Box 969, Livermore, CA 94551, U.S.A.
Search for more papers by this authorDavid Olmsted
Computational Materials Science and Engineering Department, Sandia National Laboratories, P. O. Box 5800, Albuquerque, NM 87185, U.S.A.
Search for more papers by this authorNomand A. Modine
Center for Integrated Nanotechnologies, Sandia National Laboratories, P. O. Box 5800, Albuquerque, NM 87185, U.S.A.
Search for more papers by this authorThis article is a U.S. Government work and is in the public domain in the U.S.A.
Abstract
In this work we extend classical molecular dynamics by coupling it with an electron transport model known as the two temperature model. This energy balance between free electrons and phonons was first proposed in 1956 by Kaganov et al. but has recently been utilized as a framework for coupling molecular dynamics to a continuum description of electron transport. Using finite element domain decomposition techniques from our previous work as a basis, we develop a coupling scheme that preserves energy and has local control of temperature and energy flux via a Gaussian isokinetic thermostat. Unlike the previous work on this subject, we employ an efficient, implicit time integrator for the fast electron transport which enables larger stable time steps than the explicit schemes commonly used. A number of example simulations are given that validate the method, including Joule heating of a copper nanowire and laser excitation of a suspended carbon nanotube with its ends embedded in a conducting substrate. Published in 2010 by John Wiley & Sons, Ltd.
REFERENCES
- 1 Wang J, Wang JS. Carbon nanotube thermal transport: ballistic to diffusive. Applied Physics Letters 2006; 88(11): 111909-1–111909-3.
- 2 Chen R, Hochbaum AI, Murphy P, Moore J, Yang P, Majumdar A. Thermal conductance of thin silicon nanowires. Physical Review Letters 2008; 101(10): 105501-1–105501-4.
- 3 Chang C, Okawa D, Garcia H, Majumdar A, Zettl A. Breakdown of Fourier's law in nanotube thermal conductors. Physical Review Letters 2008; 101(7):075903-1–075903-4.
- 4 Chrisey DB, Hubler GK. Pulsed Laser Deposition of Thin Films. Wiley: New York, 1994.
- 5 Baerle D. Laser Processing and Chemistry. Springer: Berlin, 2000.
10.1007/978-3-662-04074-4 Google Scholar
- 6 Sundaram SK, Mazur E. Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses. Nature Materials 2002; 1(4): 217–224.
- 7 Wang Y, Xu X, Zheng L. Molecular dynamics simulation of ultrafast laser ablation of fused silica film. Applied Physics A 2008; 92(4): 849–852.
- 8 Kim P, Shi L, Majumdar A, McEuen P. Thermal transport measurements of individual multiwalled nanotubes. Physical Review Letters 2001; 87(21): 2155-021–2155-024.
- 9 Yang B, Liu WL, Liu JL, Wang KL, Chen G. Measurements of anisotropic thermoelectric properties in superlattices. Applied Physics Letters 2002; 81(19): 3588–3590.
- 10 Li D, Wu Y, Fan R, Yang P, Majumdar A. Thermal conductivity of si/sige superlattice nanowires. Applied Physics Letters 2003; 83(15): 3186–3188.
- 11 Snyder GJ, Toberer ES. Complex thermoelectric materials. Nature Materials 2008; 7(2): 105–114.
- 12 Ou M, Yang T, Harutyunyan S, Chen Y, Chen C, Lai S. Electrical and thermal transport in single nickel nanowire. Applied Physics Letters 2008; 92(6):063101-1–063101-3.
- 13 Majumdar A, Reddy P. Role of electron–phonon coupling in thermal conductance of metal–nonmetal interfaces. Applied Physics Letters 2004; 84(23): 4768–4770.
- 14 Kaganov MI, Lifshits IM, Tanatarov LV. Relaxation between electrons and the crystal lattice. Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki 1956; 31(2(8)): 232–237.
- 15 Anisimov SI, Kapeliov BL, Perelman TL. Emission of electrons from the surface of metals induced by ultrashort laser pulses. Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki 1974; 66(2): 776–781.
- 16 Qiu TQ, Tien CL. Heat transfer mechanisms during short-pulse laser heating of metals. Journal of Heat Transfer 1993; 115(4): 835–841.
- 17 Melikyan A, Minassian H, A Guerra I, Wu W. On the theory of relaxation of electrons excited by femtosecond laser pulses in thin metallic films. Applied Physics B 1999; B68(3): 411–414.
- 18 Jiang L, Tsai HL. Improved two-temperature model and its application in ultrashort laser heating of metal films. Journal of Heat Transfer 2005; 127(10): 1167–1173.
- 19 Chen G. Nanoscale Energy Transport and Conversion. Oxford: Oxford, U.K., 2005.
10.1093/oso/9780195159424.001.0001 Google Scholar
- 20 Ghione G, Benvenuti A. Discretization schemes for high-frequency semiconductor device models. IEEE Transactions on Antennas and Propagation 1997; 45(3): 443–456.
- 21 Majumdar A, Fushinobu K, Hijikata K. Effect of gate voltage on hot-electron and hot-phonon interaction and transport in a submicrometer transistor. Journal of Applied Physics 1995; 77(12): 6686–6694.
- 22 Fushinobu K, Majumdar A, Hijikata K. Heat generation and transport in submicron semiconductor devices. ASME Journal of Heat Transfer 1995; 117(1): 25–31.
- 23 Lai J, Majumdar A. Concurrent thermal and electrical modeling of sub-micrometer silicon devices. Journal of Applied Physics 1996; 79(9): 7353–7361.
- 24 Ong ZY, Pop E. A two-temperature model of narrow-body silicon transistors under steady state and transient operation. Proceedings of the 3rd Energy Nanotechnology International Conference. American Society of Mechanical Engineers: New York, NY, 2009.
- 25 Casas-Vazquez J, Jou D. Nonequilibrium temperature versus local-equilibrium temperature. Physical Review E (Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics) 1994; 49(2): 1040–1048.
- 26 Baranyai A. Temperature of nonequilibrium steady-state systems. Physical Review E (Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics) 2000; 62(5): 5989–5997.
- 27 Bertin E, Dauchot O, Droz M. Temperature in nonequilibrium systems with conserved energy. Physical Review Letters 2004; 93(23): 230601-1–230601-4.
- 28 Braga C, Travis KP. A configurational temperature Nose–Hoover thermostat. Journal of Chemical Physics 2005; 123(13): 134101-1–134101-15.
- 29 Casas-Vazquez J, Jou D. Temperature in non-equilibrium states: a review of open problems and current proposals. Reports on Progress in Physics 2003; 66(11): 1937–2023.
- 30 Ivanov DS, Zhigilei LV. Combined atomistic-continuum model for simulation of laser interaction with metals: application in the calculation of melting thresholds in Ni targets of varying thickness. Applied Physics A 2004; 79(4–6): 977–981.
- 31 Xu XF, Cheng CR, Chowdhury IH. Molecular dynamics study of phase change mechanisms during femtosecond laser ablation. ASME Journal of Heat Transfer 2004; 126(5): 727–734.
- 32 Ivanov DS, Zhigilei LV. Combined atomistic-continuum modeling of short-pulse laser melting and disintegration of metal films. Physical Review B 2003; 68(6):064114-1–064114-22.
- 33 Koci L, Bringa E, Ivanov D, Hawreliak J, McNaney J, Higginbotham A, Zhigilei L, Belonoshko A, Remington B, Ahuja R. Simulation of shock-induced melting of Ni using molecular dynamics coupled to a two-temperature model. Physical Review B 2006; 74(1): 12101-1–12101-4.
- 34 Duff WH, Zhigilei LV. Computational study of cooling rates and recrystallization kinetics in short pulse laser quenching of metal targets. In 8th International Conference on Laser Ablation, W Hess, P Herman, D Bauerle, H Koinuma (eds), vol. 59. IOP Publishing Ltd: Bristol, England, 2007; 413–417.
- 35 Lin Z, Zhigilei LV, Celli V. Electron–phonon coupling and electron heat capacity of metals under conditions of strong electron–phonon nonequilibrium. Physical Review B 2008; 77(7):075133-1–075133-17.
- 36 Cheng CR, Xu XF. Mechanisms of decomposition of metal during femtosecond laser ablation. Physical Review B 2005; 72(16): 165415-1–165415-17.
- 37 Lin Z, Johnson RA, Zhigilei LV. Computational study of the generation of crystal defects in a bcc metal target irradiated by short laser pulses. Physical Review B 2008; 77(21): 214108-1–214108-15.
- 38 Wagner GJ, Jones RE, Templeton JA, Parks ML. An atomistic-to-continuum coupling method for heat transfer in solids. Computer Methods in Applied Mechanics and Engineering 2008; 197(41–42): 3351–3365.
- 39 Padgett CW, Brenner DW. A continuum-atomistic method for incorporating Joule heating into classical molecular dynamics simulations. Molecular Simulation 2005; 31(11): 749–757.
- 40 Irving DL, L D, Padgett CW, Brenner DW. Coupled molecular dynamics/continuum simulations of Joule heating and melting of isolated copper aluminum asperity contacts. Modelling and Simulation in Materials Science and Engineering 2009; 17(1):015004-1–015004-20.
- 41 Allen PB. Theory of thermal relaxation of electrons in metals. Physical Review Letters 1987; 59(13): 1460–1463.
- 42 Hertel T, Fasel R, Moos G. Charge-carrier dynamics in single-wall carbon nanotube bundles: a time-domain study. Applied Physics A 2002; 75(4): 449–465.
- 43 John F. Partial Differential Equations( 4th edn). Springer: New York, NY, 1982.
10.1007/978-1-4684-9333-7 Google Scholar
- 44 Ashcroft NW, Mermin ND. Solid State Physics. Brooks/Cole: London, 1976.
- 45 Tanuma S, Powell CJ, Penn D. Calculations of electron inelastic mean free paths for 31 materials. Surface and Interface Analysis 1988; 11(11): 577–589.
- 46 Hoover WG. Canonical dynamics: equilibrium phase-space distributions. Physical Review A 1985; 31: 1695–1697.
- 47 van Gunsteren W, Berendsen H. Algorithms for brownian dynamics. Molecular Physics 1982; 45(3): 637–647.
- 48 Evans DJ, Hoover WG, Failor BH, Moran B, Ladd AJC. Nonequilibrium molecular dynamics via Gauss's principle of least constraint. Physical Review A 1983; 28(2): 1016–1021.
- 49 Duffy D, Rutherford A. Including the effects of electronic stopping and electron–ion interactions in radiation damage simulations. Journal of Physics: Condensed Matter 2007; 19(1):016207-1–016207-11.
- 50 Ikeshoji T, Hafskjold B. Non-equilibrium molecular dynamics calculation of heat conduction in liquid and through liquid–gas interface. Molecular Physics 1994; 81(2): 251–261.
- 51 Gear C. Numerical Initial Value Problems in Ordinary Differential Equations. Prentice-Hall: Englewood Cliffs, NJ, 1971.
- 52 Beam R, Warming R. An implicit finite-difference algorithm for hyperbolic systems in conservation-law form. Journal of Computational Physics 1976; 22(1): 87–110.
- 53 Lowrie RB. A comparison of implicit time integration methods for nonlinear relaxation and diffusion. Journal of Computational Physics 2004; 196(2): 566–590.
- 54 Saad Y, Schultz MH. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computing 1986; 7(3): 856–869.
- 55 Foiles S, Baskes M, Daw M. Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Physical Review B 1986; 33(12): 7983–7991.
- 56 Eesley GL. Generation of nonequilibrium electron and lattice temperatures in copper by picosecond laser pulses. Physical Review B 1986; 33(4): 2144–2151.
- 57 Tersoff J. New empirical approach for the structure and energy of covalent systems. Physical Review B 1988; 37(12): 6991–7000.
- 58 Tersoff J. Modeling solid-state chemistry—interatomic potentials for multicomponent systems. Physical Review B 1989; 39(8): 5566–5568.
- 59 Xiao S, Belytschko T. A bridging domain method for coupling continua with molecular dynamics. Computer Methods in Applied Mechanics and Engineering 2004; 193(17–20): 1645–1669.
- 60 Liu X, Li S. Nonequilibrium multiscale computational model. Journal of Chemical Physics 2007; 126(12): 124105-1-1–124105-1-12.
- 61 Zimmerman JA, Klein PA, EBW III. Coupling and communicating between atomistic and continuum simulation methodologies. Multiscaling in Molecular and Continuum Mechanics: Interaction of Time and Size from Macro to Nano. Springer: New York, NY, 2007; 439–455.
10.1007/978-1-4020-5062-6_18 Google Scholar
- 62 Lukes JR, Zhong HL. Thermal conductivity of individual single-wall carbon nanotubes. ASME Journal of Heat Transfer 2007; 129(6): 705–716. DOI: 10.1115/1.2717242.
- 63 Schelling PK, Phillpot SR, Keblinski P. Comparison of atomic-level simulation methods for computing thermal conductivity. Physical Review B 2002; 65(14): 144306-1–144306-12.
- 64 Daligault J, Mozyrsky D. Ion dynamics and energy relaxation rate in nonequilibrium electron-ion systems. Physical Review E 2007; 75(2, 2):026402-1–026402-9.