Intracellular and extracellular T1 and T2 relaxivities of magneto-optical nanoparticles at experimental high fields
Corresponding Author
Gert Klug
Medizinische Klinik und Poliklinik I, Universitätsklinik Würzburg, Würzburg, Germany
Universitätsklinik für Innere Medizin III, Medizinsche Universität Innsbruck, Austria===Search for more papers by this authorThomas Kampf
Experimentelle Physik 5, Universität Würzburg, Würzburg, Germany
Search for more papers by this authorSteffen Bloemer
Institut für Anorganische Chemie, Universität Würzburg, Würzburg, Germany
Search for more papers by this authorJohannes Bremicker
Medizinische Klinik und Poliklinik I, Universitätsklinik Würzburg, Würzburg, Germany
Search for more papers by this authorChristian H. Ziener
Experimentelle Physik 5, Universität Würzburg, Würzburg, Germany
Search for more papers by this authorAndrea Heymer
Division of Tissue Engineering, König-Ludwig-Haus, Würzburg, Germany
Search for more papers by this authorUwe Gbureck
Department of Functional Materials in Medicine and Dentistry, Universität Würzburg, Würzburg, Germany
Search for more papers by this authorEberhard Rommel
Experimentelle Physik 5, Universität Würzburg, Würzburg, Germany
Search for more papers by this authorUlrich Nöth
Division of Tissue Engineering, König-Ludwig-Haus, Würzburg, Germany
Search for more papers by this authorWolfdieter A. Schenk
Institut für Anorganische Chemie, Universität Würzburg, Würzburg, Germany
Search for more papers by this authorPeter M. Jakob
Experimentelle Physik 5, Universität Würzburg, Würzburg, Germany
Search for more papers by this authorWolfgang R. Bauer
Medizinische Klinik und Poliklinik I, Universitätsklinik Würzburg, Würzburg, Germany
Search for more papers by this authorCorresponding Author
Gert Klug
Medizinische Klinik und Poliklinik I, Universitätsklinik Würzburg, Würzburg, Germany
Universitätsklinik für Innere Medizin III, Medizinsche Universität Innsbruck, Austria===Search for more papers by this authorThomas Kampf
Experimentelle Physik 5, Universität Würzburg, Würzburg, Germany
Search for more papers by this authorSteffen Bloemer
Institut für Anorganische Chemie, Universität Würzburg, Würzburg, Germany
Search for more papers by this authorJohannes Bremicker
Medizinische Klinik und Poliklinik I, Universitätsklinik Würzburg, Würzburg, Germany
Search for more papers by this authorChristian H. Ziener
Experimentelle Physik 5, Universität Würzburg, Würzburg, Germany
Search for more papers by this authorAndrea Heymer
Division of Tissue Engineering, König-Ludwig-Haus, Würzburg, Germany
Search for more papers by this authorUwe Gbureck
Department of Functional Materials in Medicine and Dentistry, Universität Würzburg, Würzburg, Germany
Search for more papers by this authorEberhard Rommel
Experimentelle Physik 5, Universität Würzburg, Würzburg, Germany
Search for more papers by this authorUlrich Nöth
Division of Tissue Engineering, König-Ludwig-Haus, Würzburg, Germany
Search for more papers by this authorWolfdieter A. Schenk
Institut für Anorganische Chemie, Universität Würzburg, Würzburg, Germany
Search for more papers by this authorPeter M. Jakob
Experimentelle Physik 5, Universität Würzburg, Würzburg, Germany
Search for more papers by this authorWolfgang R. Bauer
Medizinische Klinik und Poliklinik I, Universitätsklinik Würzburg, Würzburg, Germany
Search for more papers by this authorAbstract
This study reports the T1 and T2 relaxation rates of rhodamine-labeled anionic magnetic nanoparticles determined at 7, 11.7, and 17.6 T both in solution and after cellular internalization. Therefore cells were incubated with rhodamine-labeled anionic magnetic nanoparticles and were prepared at decreasing concentrations. Additionally, rhodamine-labeled anionic magnetic nanoparticles in solution were used for extracellular measurements. T1 and T2 were determined at 7, 11.7, and 17.6 T. T1 times were determined with an inversion-recovery snapshot-flash sequence. T2 times were obtained from a multispin-echo sequence. Inductively coupled plasma-mass spectrometry was used to determine the iron content in all samples, and r1 and r2 were subsequently calculated. The results were then compared with cells labeled with AMI-25 and VSOP C-200. In solution, the r1 and r2 of rhodamine-labeled anionic magnetic nanoparticles were 4.78/379 (7 T), 3.28/389 (11.7 T), and 2.00/354 (17.6 T). In cells, the r1 and r2 were 0.21/56 (7 T), 0.19/37 (11.7 T), and 0.1/23 (17.6 T). This corresponded to an 11- to 23-fold decrease in r1 and an 8- to 15-fold decrease in r2. A decrease in r1 was observed for AMI-25 and VSOP C-200. AMI-25 and VSOP exhibited a 2- to 8-fold decrease in r2. In conclusion, cellular internalization of iron oxide nanoparticles strongly decreased their T1 and T2 potency. Magn Reson Med, 2010. © 2010 Wiley-Liss, Inc.
REFERENCES
- 1 Clarke SE, Weinmann HJ, Dai E, Lucas AR, Rutt BK. Comparison of two blood pool contrast agents for 0.5-T MR angiography: experimental study in rabbits. Radiology 2000; 214: 787–794.
- 2 Wunderbaldinger P, Josephson L, Weissleder R. Crosslinked iron oxides (CLIO): a new platform for the development of targeted MR contrast agents. Acad Radiol 2002; 9 ( Suppl 2): S304–S306.
- 3 Taupitz M, Wagner S, Schnorr J, Kravec I, Pilgrimm H, Bergmann-Fritsch H, Hamm B. Phase I clinical evaluation of citrate-coated monocrystalline very small superparamagnetic iron oxide particles as a new contrast medium for magnetic resonance imaging. Invest Radiol 2004; 39: 394–405.
- 4 Brisset JC, Desestret V, Marcellino S, Devillard E, Lagrade F, Nighoghossian N, Berthezene Y, Wiart M. T1 and T2 quantification of free USPIO and USPIO-labeled macrophages at 4.7T and 7T. Proc Int Soc Mag Res Med 2008; 16: 1687.
- 5 Bulte JW, Vymazal J, Brooks RA, Pierpaoli C, Frank JA. Frequency dependence of MR relaxation times. II. Iron oxides. J Magn Reson Imaging 1993; 3: 641–648.
- 6 Corot C, Robert P, Idee JM, Port M. Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev 2006; 58: 1471–1504.
- 7 Nahrendorf M, Jaffer FA, Kelly KA, Sosnovik DE, Aikawa E, Libby P, Weissleder R. Noninvasive vascular cell adhesion molecule-1 imaging identifies inflammatory activation of cells in atherosclerosis. Circulation 2006; 114: 1504–1511.
- 8 Bertorelle F, Wilhelm C, Roger J, Gazeau F, Menager C, Cabuil V. Fluorescence-modified superparamagnetic nanoparticles: intracellular uptake and use in cellular imaging. Langmuir 2006; 22: 5385–5391.
- 9 Billotey C, Wilhelm C, Devaud M, Bacri JC, Bittoun J, Gazeau F. Cell internalization of anionic maghemite nanoparticles: quantitative effect on magnetic resonance imaging. Magn Reson Med 2003; 49: 646–654.
- 10 Simon GH, Bauer J, Saborovski O, Fu Y, Corot C, Wendland MF, Daldrup-Link HE. T1 and T2 relaxivity of intracellular and extracellular USPIO at 1.5T and 3T clinical MR scanning. Eur Radiol 2006; 16: 738–745.
- 11 Bowen CV, Zhang X, Saab G, Gareau PJ, Rutt BK. Application of the static dephasing regime theory to superparamagnetic iron oxide loaded cells. Magn Reson Med 2002; 48: 52–61.
- 12 Sun S, Zeng H, Robinson DB, Raoux S, Rice PM, Wang SX, Li G. Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J Am Chem Soc 2004; 126: 273–279.
- 13 Kohler N, Fryxell GE, Zhang M. A bifunctional poly(ethylene glycol) silane immobilized on metallic oxide-based nanoparticles for conjugation with cell targeting agents. J Am Chem Soc 2004; 126: 7206–7211.
- 14 Adami C, Brunda MJ, Palleroni AV. In vivo immortalization of murine peritoneal macrophages: a new rapid and efficient method for obtaining macrophage cell lines. J Leukoc Biol 1993; 53: 475–478.
- 15 Deichmann R, Haase A. Quantification of Tl values by SNAPSHOT-FLASH NMR imaging. J Magn Reson 1992; 96: 608–612.
- 16 LaConte LE, Nitin N, Zurkiya O, Caruntu D, O'Connor CJ, Hu X, Bao G. Coating thickness of magnetic iron oxide nanoparticles affects R2 relaxivity. J Magn Reson Imaging 2007; 26: 1634–1641.
- 17 Billotey C, Aspord C, Beuf O, Piaggio E, Gazeau F, Janier MF, Thivolet C. T-cell homing to the pancreas in autoimmune mouse models of diabetes: in vivo MR imaging. Radiology 2005; 236: 579–587.
- 18 Kuhlpeter R, Dahnke H, Matuszewski L, Persigehl T, von Wallbrunn A, Allkemper T, Heindel WL, Schaeffter T, Bremer C. R2 and R2* mapping for sensing cell-bound superparamagnetic nanoparticles: in vitro and murine in vivo testing. Radiology 2007; 245: 449–457.
- 19 Koenig SH, Kellar KE. Theory of 1/T1 and 1/T2 NMRD profiles of solutions of magnetic nanoparticles. Magn Reson Med 1995; 34: 227–233.
- 20 Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst LV, Muller RN. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 2008; 108: 2064–2110.
- 21 Roch A, Muller RN, Gillis P. Theory of proton relaxation induced by superparamagnetic particles. J Chem Phys 1999; 110: 5403– 5411.
- 22 Jensen JH, Chandra R. NMR relaxation in tissues with weak magnetic inhomogeneities. Magn Reson Med 2000; 44: 144–156.
- 23 Ziener CH, Bauer WR, Jakob PM. Transverse relaxation of cells labeled with magnetic nanoparticles. Magn Reson Med 2005; 54: 702–706.
- 24
Jensen JH,
Chandra R.
Strong field behavior of the NMR signal from magnetically heterogeneous tissues.
Magn Reson Med
2000;
43:
226–236.
10.1002/(SICI)1522-2594(200002)43:2<226::AID-MRM9>3.0.CO;2-P CAS PubMed Web of Science® Google Scholar
- 25 Brown RJS. Distribution of fields from randomly placed dipoles: free-precession signal decay as result of magnetic grains. Phys Rev 1961; 121: 1379–1382.
- 26 Yablonskiy DA, Haacke EM. Theory of NMR signal behavior in magnetically inhomogeneous tissues: the static dephasing regime. Magn Reson Med 1994; 32: 749–763.
- 27 Ziener CH, Bauer WR, Melkus G, Weber T, Herold V, Jakob PM. Structure-specific magnetic field inhomogeneities and ist effect on the correlation time. Magn Reson Imaging 2006; 24: 1341–1347.
- 28 Ziener CH, Kampf T, Jakob PM, Bauer WR. Diffusion effects on the CPMG relaxation rate in a dipolar field. J Magn Reson 2010; 202: 38–42.
- 29 Carr HY, Purcell EM. Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys Rev 1954; 94: 630–638.
- 30 Gillis P, Koenig SH. Transverse relaxation of solvent protons induced by magnetized spheres: application to ferritin, erythrozytes, and magnetite. Magn Reson Med 1987; 5: 323–345.
- 31 Bulte JW, Zhang S, van Gelderen P, Herynek V, Jordan EK, Duncan ID, Frank JA. Neurotransplantation of magnetically labeled oligodendrocyte progenitors: magnetic resonance tracking of cell migration and myelination. Proc Natl Acad Sci USA 1999; 96: 15256–15261.
- 32 Metz S, Bonaterra G, Rudelius M, Settles M, Rummeny EJ, Daldrup-Link HE. Capacity of human monocytes to phagocytose approved iron oxide MR contrast agents in vitro. Eur Radiol 2004; 14: 1851–1858.
- 33 Wilhelm C, Billotey C, Roger J, Pons JN, Bacri JC, Gazeau F. Intracellular uptake of anionic superparamagnetic nanoparticles as a function of their surface coating. Biomaterials 2003; 24: 1001–1011.
- 34 Fleige G, Seeberger F, Laux D, Kresse M, Taupitz M, Pilgrimm H, Zimmer C. In vitro characterization of two different ultrasmall iron oxide particles for magnetic resonance cell tracking. Invest Radiol 2002; 37: 482–488.
- 35 Corot C, Port M, Guilbert I, Robert P, Raynal I, Robic C, Raynaud J-S, Prigent P, Dencausse A, Idee J-M. Superparamagnetic contrast agents. In: MMJ Modo, WM Jeff, JWM Bulte, editors. Molecular and cellular MR imaging. CRC Press; Boca Raton, FL. 2007. p. 59–84.
- 36 Klug G, Bremicker J, Kampf T, Bauer E, Basse-Lüsebrink T, Weber M, Gbureck U, Nöth U, Jakob PM, Bauer WR. Detection limits of very small iron oxide nanoparticles in labeled cells: a quantitative evaluation of histochemistry and MR-relaxometry. Proc Int Soc Mag Res Med 2009; 17: 906.