Real-time MR-thermometry and dosimetry for interventional guidance on abdominal organs
Sébastien Roujol
Laboratory for Molecular and Functional Imaging: From Physiology to Therapy, UMR 5231 CNRS/Université Bordeaux 2, Bordeaux, France
LaBRI, UMR 5800 CNRS/Université Bordeaux 1, Talence, France
Search for more papers by this authorMario Ries
Laboratory for Molecular and Functional Imaging: From Physiology to Therapy, UMR 5231 CNRS/Université Bordeaux 2, Bordeaux, France
Search for more papers by this authorBruno Quesson
Laboratory for Molecular and Functional Imaging: From Physiology to Therapy, UMR 5231 CNRS/Université Bordeaux 2, Bordeaux, France
Search for more papers by this authorChrit Moonen
Laboratory for Molecular and Functional Imaging: From Physiology to Therapy, UMR 5231 CNRS/Université Bordeaux 2, Bordeaux, France
Search for more papers by this authorCorresponding Author
Baudouin Denis de Senneville
Laboratory for Molecular and Functional Imaging: From Physiology to Therapy, UMR 5231 CNRS/Université Bordeaux 2, Bordeaux, France
UMR 5231, Imagerie Moléculaire et Fonctionnelle, Université «Victor Segalen» Bordeaux 2===Search for more papers by this authorSébastien Roujol
Laboratory for Molecular and Functional Imaging: From Physiology to Therapy, UMR 5231 CNRS/Université Bordeaux 2, Bordeaux, France
LaBRI, UMR 5800 CNRS/Université Bordeaux 1, Talence, France
Search for more papers by this authorMario Ries
Laboratory for Molecular and Functional Imaging: From Physiology to Therapy, UMR 5231 CNRS/Université Bordeaux 2, Bordeaux, France
Search for more papers by this authorBruno Quesson
Laboratory for Molecular and Functional Imaging: From Physiology to Therapy, UMR 5231 CNRS/Université Bordeaux 2, Bordeaux, France
Search for more papers by this authorChrit Moonen
Laboratory for Molecular and Functional Imaging: From Physiology to Therapy, UMR 5231 CNRS/Université Bordeaux 2, Bordeaux, France
Search for more papers by this authorCorresponding Author
Baudouin Denis de Senneville
Laboratory for Molecular and Functional Imaging: From Physiology to Therapy, UMR 5231 CNRS/Université Bordeaux 2, Bordeaux, France
UMR 5231, Imagerie Moléculaire et Fonctionnelle, Université «Victor Segalen» Bordeaux 2===Search for more papers by this authorAbstract
The use of proton resonance frequency shift–based magnetic resonance (MR) thermometry for interventional guidance on abdominal organs is hampered by the constant displacement of the target due to the respiratory cycle and the associated thermometry artifacts. Ideally, a suitable MR thermometry method should for this role achieve a subsecond temporal resolution while maintaining a precision comparable to those achieved on static organs while not introducing significant processing latencies. Here, a computationally effective processing pipeline for two-dimensional image registration coupled with a multibaseline phase correction is proposed in conjunction with high-frame-rate MRI as a possible solution. The proposed MR thermometry method was evaluated for 5 min at a frame rate of 10 images/sec in the liver and the kidney of 11 healthy volunteers and achieved a precision of less than 2°C in 70% of the pixels while delivering temperature and thermal dose maps on the fly. The ability to perform MR thermometry and dosimetry in vivo during a real intervention was demonstrated on a porcine kidney during a high-intensity focused ultrasound heating experiment. Magn Reson Med 63:1080–1087, 2010. © 2010 Wiley-Liss, Inc.
REFERENCES
- 1 Laumonier H, Blanc JF, Quesson B, Seror O, Laurent C, Bioulac-Sage P, Balabaud C, Trillaud H. Real-time monitoring of hepatocellular carcinoma radiofrequency ablation by quantitative temperature MRI. Seminin Liver Dis 2006; 26: 391–397.
- 2 Puls R, Langner S, Rosenberg C, Hegenscheid K, Kuehn JP, Noeckler K, Hosten N. Laser ablation of liver metastases from colorectal cancer with MR thermometry: 5-year survival. J Vasc Interv Radiol 2009; 20: 225–234.
- 3 Fry FJ. Precision high intensity focusing ultrasonic machines for surgery. Am J Phys Med 1958; 37: 152–156.
- 4 Hindley J, Gedroyc WM, Regan L, Stewart E, Tempany C, Hynyen K, Mcdannold N, Inbar Y, Itzchak Y, Rabinovici J, Kim HS, Geschwind JF, Hesley G, Gostout B, Ehrenstein T, Hengst S, Sklair-Levy M, Shushan A, Jolesz F. MRI guidance of focused ultrasound therapy of uterine fibroids: early results. AJR Am J Roentgenol 2004; 183: 1713–1719.
- 5 Hynynen K, McDannold N, Clement G, Jolesz FA, Zadicario E, Killiany R, Moore T, Rosen D. Preclinical testing of a phased array ultrasound system for MRI-guided noninvasive surgery of the brain: a primate study. Eur J Radiol 2006; 59: 149–156.
- 6 De Poorter J, De Wagter C, De Deene Y, Thomson C, Stahlberg F, Achten E. The proton resonance frequency shift method compared with molecular diffusion for quantitative measurement of two dimensional time dependent temperature distribution in phantom. J Magn Reson Imaging 1994; 103: 234–241.
- 7 Young IR, Hajnal JV, Roberts IG, Ling JX, Hill-Cottingham RJ, Oatridge A, Wilson JA. An evaluation of the effects of susceptibility changes on the water chemical shift method of temperature measurement in human peripheral muscle. Magn Reson Med 1996; 36: 366–374.
- 8
Peters RD, Henkelman RM.
Proton-resonance frequency shift MR thermometry is affected by changes in the electrical conductivity of tissue.
Magn Reson Med
2000;
43:
62–71.
10.1002/(SICI)1522-2594(200001)43:1<62::AID-MRM8>3.0.CO;2-1 CAS PubMed Web of Science® Google Scholar
- 9 Weidensteiner C, Kerioui N, Quesson B, de Senneville BD, Trillaud H, Moonen CT. Stability of real-time MR temperature mapping in healthy and diseased human liver. J Magn Reson Imaging 2004; 19: 438–446.
- 10 de Zwart JA, Vimeux FC, Palussière J, Salomir R, Quesson B, Delalande C, Moonen CTW. Online correction and visualization of motion during MRI-controlled hyperthermia. Magn Reson Med 2001; 45: 128–137.
- 11 Vigen KK, Daniel BL, Pauly JM, Butts K. Triggered, navigated, multi-baseline method for proton resonance frequency temperature mapping with respiratory motion, Magn Reson Med 2003; 50: 1003–1010.
- 12 Denis de Senneville B, Mougenot C, Moonen CTW. Real time adaptive methods for treatment of mobile organs by MRI controlled high intensity focused ultrasound. Magn Reson Med 2007; 57: 319–330.
- 13 Rieke V, Vigen KK, Sommer G, Daniel BL, Pauly JM, Butts K. Referenceless PRF: shift thermometry. Magn Reson Med 2004; 51: 1223– 1231.
- 14 Sapareto SA, Dewey WCL. Thermal dose determination in cancer therapy. Int J Radiat Oncol Biol Phys 1984; 10: 787–800.
- 15 Hey S, Maclair G, de Senneville BD, Lepetit-Coiffe M, Berber Y, Köhler MO, Quesson B, Moonen CT, Ries M. Online correction of respiratory-induced field disturbances for continuous MR-thermometry in the breas. Magn Reson Med 2009; 61: 1494–1499.
- 16 Maintz JBA, Viergever MA. A survey of medical image registration. Med Image Anal 1998; 2: 1–36.
- 17 Regalia PA. Adaptive IIR filtering in signal processing and control. Marcel Dekker: New York, 1995.
- 18
Friston KJ, Ashburner J, Frith CD, Poline JB, Heather JD, Frackowiak RSJ.
Spatial registration and normalisation of images.
Hum Brain Mapp
1995;
2:
165–189.
10.1002/hbm.460030303 Google Scholar
- 19 Horn BKP, Schunck BG. Determining optical flow. Artificial Intelligence 1981; 17: 185–203.
- 20 Cornelius N, Kanade T. Adapting optical flow to measure object motion in reflectance and X-ray image sequences. In: ACM SIGGRAPH/SIGART Interdisciplinary Workshop on Motion: Representation and Perception Workshop on Motion, pp. 50–58, Toronto, Canada, 1983.
- 21
Pratikakis I, Barillot C, Hellier P, Mémin E.
Robust multiscale deformable registration of 3D ultrasound images.
Int J Image Graphics
2003;
3:
547–566.
10.1142/S0219467803001184 Google Scholar
- 22 El-Sharkawy AM, Schar M, Bottomley PA, Atalar E. Monitoring and correcting spatio-temporal variations of the MR scanner's static magnetic field. MAGMA 2006; 19: 223–236.
- 23 Riederer SJ. Recent technical advances in MR imaging of the abdomen. J Magn Reson Imaging 1996; 6: 822–832.
- 24 Mitra SK. Digital signal processing. 2nd edition. McGraw-Hill; 2001.
- 25 Bruder H, Fisher H, Reinfelder HE, Schmitt F. Image reconstruction for EPI with non-equidistant k-space sampling. Magn Reson Med 1992; 23: 311–323.
- 26 NVIDIA Corporation. NVIDIA CUDA: compute unified device architecture, programming guide, 2.0 edition. NVIDIA Corporation; 2008.
- 27 Seror O, Lepetit-Coiffé M, Quesson B, Trillaud H, Moonen CTW. Quantitative magnetic resonance temperature mapping for real-time monitoring of radiofrequency ablation of the liver: an ex vivo study. Eur Radiol 2006; 16: 2265–2274.
- 28 Ross JC, Tranquebar R, Shanbhag D. Real-time liver motion compensation for MrgFUS, Proceedings of the 11th International Conference on Medical Image Computing and Computer-Assisted Intervention, Part 2, 2008, 806–813.
- 29 Mougenot C, Salomir R, Palussière J, Grenier N, Moonen CTW. Automatic spatial and temporal temperature control for MR-guided focused ultrasound using fast 3D MR thermometry and multispiral trajectory of the focal point. Magn Reson Med 2004; 52: 1005–1015.
- 30 Chavez S, Xiang QS, An L. Understanding phase maps in MRI: a new cutline phase unwrapping method. IEEE Trans Med Imaging 2002; 21: 966–977.
- 31 Conturo TE, Smith GD. Signal to noise in phase angle reconstruction: dynamic range extension using phase reference offsets. Magn Reson Med 1990; 15: 420–437.
- 32 Moonen CT. Spatio-temporal control of gene expression and cancer treatment using magnetic resonance imaging-guided focused ultrasound. Clin Cancer Res 2007; 13: 3482–3489.