Synthesis for sidelobe suppression of linear array based on improved grasshopper optimization algorithm with adaptive chaotic strategy
Corresponding Author
Hengfeng Wang
National Key Laboratory for Vessel Integrated Power System Technology, Naval University of Engineering, Wuhan, China
Correspondence
Hengfeng Wang, National Key Laboratory for Vessel Integrated Power System Technology, Naval University of Engineering, Wuhan, 430033, China.
Email: [email protected]
Search for more papers by this authorYing Kang
National Key Laboratory for Vessel Integrated Power System Technology, Naval University of Engineering, Wuhan, China
Search for more papers by this authorBin Li
National Key Laboratory for Vessel Integrated Power System Technology, Naval University of Engineering, Wuhan, China
Search for more papers by this authorCorresponding Author
Hengfeng Wang
National Key Laboratory for Vessel Integrated Power System Technology, Naval University of Engineering, Wuhan, China
Correspondence
Hengfeng Wang, National Key Laboratory for Vessel Integrated Power System Technology, Naval University of Engineering, Wuhan, 430033, China.
Email: [email protected]
Search for more papers by this authorYing Kang
National Key Laboratory for Vessel Integrated Power System Technology, Naval University of Engineering, Wuhan, China
Search for more papers by this authorBin Li
National Key Laboratory for Vessel Integrated Power System Technology, Naval University of Engineering, Wuhan, China
Search for more papers by this authorAbstract
In view of the shortcomings of grasshopper optimization algorithm(GOA), such as insufficient exploration ability in the early stage and insufficient development ability in the later stage, this paper proposes a new adaptive chaotic GOA (ACGOA) by using curve adaptive adjustment strategy to replace the existing linear adaptive strategy, and using uniform chaos optimization to update the grasshopper position, so as to further improve the comprehensive ability of grasshopper swarms in the early exploration and later development, and better realize the balance between global search and local optimization ability. The effectiveness and stability of ACGOA in optimization calculation are tested by using a variety of single/multi peak benchmark function to get the extremum, and then applied to pattern synthesis of linear array for the first time, the target optimization performance of ACGOA is verified by suppressing the maximum SLL of linear array. The results show that compared with other existing algorithms, the algorithm has lower maximum sidelobe level and narrower first null beam width. The ACGOA results and convergence test show that the algorithm has superior applicability in antenna optimization.
Open Research
DATA AVAILABILITY STATEMENT
Data sharing is not applicable to this article as no new data were created or analyzed in this study.
REFERENCES
- 1Cheng DK. Optimization techniques for antenna arrays. Proc IEEE. 1971; 59(12): 1664-1674. doi:10.1109/proc.1971.8523
- 2Cheng D, Tseng FS. Gain optimization for arbitrary antenna arrays. IEEE Trans Antennas Propag. 1967; 13(6): 973-974. doi:10.1109/tap.1965.1138542
- 3Lebret H, Boyd S. Antenna array pattern synthesis via convex optimization. IEEE Trans Signal Process. 1997; 45(3): 526-532. doi:10.1109/78.558465
- 4You P, Liu Y, Chen SL, et al. Synthesis of unequally spaced linear antenna arrays with minimum element spacing constraint by alternating convex optimization. IEEE Antennas Wirel Propag Lett. 2017; 16: 3126-3130. doi:10.1109/lawp.2017.2764069
- 5Keizer WPMN. Low-Sidelobe pattern synthesis using iterative Fourier techniques coded in MATLAB [EM Programmer's notebook]. IEEE Antennas Propag Mag. 2009; 51(2): 137-150. doi:10.1109/map.2009.5162038
- 6Shi L, Deng YK, Sun HF. Pattern synthesis method for large planar two-dimensional arrays using FFT. Syst Eng Electron. 2011; 33(11): 2377-2381. doi:10.3969/j.issn.1001-506X.2011.11.06
10.3969/j.issn.1001-506X.2011.11.06 Google Scholar
- 7Haddadi A, Ghorbani A, Rashed-Mohassel J. Cosecant-squared pattern synthesis using a weighted alternating reverse projection method. IET Microw Antennas Propag. 2011; 5(15): 1789-1795. doi:10.1049/iet-map.2011.0056
- 8Han Y, Wan C. Scalable alternating projection and proximal splitting for array pattern synthesis. Int J Antennas Propag. 2015; 2015(10): 1-13. doi:10.1155/2015/915293
- 9Panduro MA. Design of coherently radiating structures in a linear array geometry using genetic algorithms. AEU-Int J Electron Commun. 2007; 61(8): 515-520. doi:10.1016/j.aeue.2006.09.002
- 10Panduro MA, Covarrubias DH, Brizuela CA, et al. A multi-objective approach in the linear antenna array design. AEU-Int J Electron C. 2005; 59(4): 205-212. doi:10.1016/j.aeue.2004.11.017
- 11Recioui A. Sidelobe level reduction in linear array pattern synthesis using particle swarm optimization. J Optimiz Theory Appl. 2012; 153: 497-512. doi:10.1007/s10957-011-9953-9
- 12Khodier MM, Christodoulou CG. Linear array geometry synthesis with minimum sidelobe level and null control using particle swarm optimization. IEEE Trans Antennas Propag. 2005; 53(8): 2674-2679. doi:10.1109/tap.2005.851762
- 13Singh U, Rattan M. Design of linear and circular antenna arrays using cuckoo optimization algorithm. Prog Electromagn Res C. 2014; 46: 1-11. doi:10.2528/pierc13110902
10.2528/pierc13110902 Google Scholar
- 14Zhang C, Fu X, Ligthart LP, et al. Synthesis of broadside linear aperiodic arrays with sidelobe suppression and null steering using whale optimization algorithm. IEEE Antennas Wirel Propag Lett. 2018; 17(2): 347-350. doi:10.1109/lawp.2018.2789919
- 15Pappula L, Ghosh D. Linear antenna array synthesis using cat swarm optimization. AEUE—Int J Electron Commun. 2014; 68(6): 540-549. doi:10.1016/j.aeue.2013.12.012
- 16Al Azza AA, Al Jodah AA, Harackiewicz FJ. Spider monkey optimization: a novel technique for antenna optimization. IEEE Antennas Wirel Propag Lett. 2016; 15(6): 1016-1019. doi:10.1109/lawp.2015.2490103
- 17Arora S, Singh S. The firefly optimization algorithm: convergence analysis and parameter selection. Int J Comput Appl. 2014; 69(3): 48-52. doi:10.5120/11826-7528
10.5120/11826-7528 Google Scholar
- 18Pavani T, Raju GS, Sridevi PV. Pattern synthesis of linear array with position and position-amplitude control using firefly algorithm. Int J Comput Appl. 2014; 99(7): 18-23. doi:10.5120/17384-7919
10.5120/17384-7919 Google Scholar
- 19Ahammed MJ, Swathi A, Sanku D, et al. Performance of firefly algorithm for null positioning in linear arrays. Proceedings of 2nd International Conference on Micro-Electronics, Electromagnetics and Telecommunications. 2018; 434: 383-391. doi:10.1007/978-981-10-4280-5_40
10.1007/978-981-10-4280-5_40 Google Scholar
- 20Raviteja GV, Sridevi K, Rani AJ, et al. Adaptive uniform circular array synthesis using cuckoo search algorithm. J Electromagn Anal Appl. 2016; 08(4): 71-78. doi:10.4236/jemaa.2016.84008
10.4236/jemaa.2016.84008 Google Scholar
- 21Khodier M. Comprehensive study of linear antenna Array optimisation using the cuckoo search algorithm. IET Microw Antennas Propag. 2019; 13(9): 1325-1333. doi:10.1049/iet-map.2018.5649
- 22Jada C, Vadathya AK, Shaik A, et al. Butterfly mating optimization. Intell Syst Technol Appl. 2016; 384: 3-15. doi:10.1007/978-3-319-23036-8_1
10.1007/978-3-319-23036-8_1 Google Scholar
- 23Zhang J, Wang H-F, Yang Y-L, Li B. Soft computing in array pattern peak based on butterfly mating optimization. 2016 2nd IEEE International Conference on Computer and Communications (ICCC); 2016: 2641-2644. doi:10.1109/CompComm.2016.7925176.
10.1109/CompComm.2016.7925176 Google Scholar
- 24Li B, Liu C, Wu H, et al. Chaotic adaptive butterfly mating optimization and its applications in synthesis and structure optimization of antenna arrays. Int J Antennas Propag. 2019; 2019: 1-14. doi:10.1155/2019/1730868
- 25Sun G, Liu Y, Li H, et al. An antenna array sidelobe level reduction approach through invasive weed optimization. Int J Antennas Propag. 2018; 2018: 1-16. doi:10.1155/2018/4867851
- 26Saremi S, Mirjalili S, Lewis A. Grasshopper optimisation algorithm: theory and application. Adv Eng Softw. 2017; 105: 30-47. doi:10.1016/j.advengsoft.2017.01.004
- 27Chakraborty A, Ram G, Mandal D. Optimal pulse shifting in timed antenna Array for simultaneous reduction of sidelobe and sideband level. IEEE Access. 2020; 8: 131063-131075. doi:10.1109/access.2020.3010047
- 28Wang H, Liu C, Wu H, et al. Optimal pattern synthesis of linear array and broadband design of whip antenna using grasshopper optimization algorithm. Int J Antennas Propag. 2020; 2020: 14-28. doi:10.1155/2020/5904018
- 29Xiao-Hui Y, Yan-Bin Y, Cheng W, et al. A novel self-adaptive chaotic genetic algorithm. Chin J Electron. 2006; 34(4): 708-712.
- 30Zang H, Huang H. Research on algorithm of generating S-box based on uniform chaotic system. J Electron Inf Technol. 2017; 39(3): 575-581. doi:10.11999/JEIT160535
- 31Cao GH, Hu K, Tong W. Image scrambling based on logistic uniform distribution. Wuli Xuebao/Acta Phys Sin-Chin Ed. 2011; 60(11): 110508. doi:10.7498/aps.60.110508
- 32Hong-Yan Z, Hong-Yu C. Homogenization and entropy analysis of a quadratic polynomial chaotic system. Acta Phys Sin. 2016; 65(3): 030504. doi:10.7498/aps.65.030504ZC
10.7498/aps.65.030504ZC Google Scholar
- 33Meraihi Y, Gabis AB, Mirjalili S, Ramdane-Cherif A. Grasshopper optimization algorithm: theory, variants, and applications. IEEE Access. 2021; 9: 50001-50024. doi:10.1109/access.2021.3067597
- 34Mafarja M, Aljarah I, Faris H, Hammouri AI, Al-Zoubi AM, Mirjalili S. Binary grasshopper optimisation algorithm approaches for feature selection problems. Expert Syst Appl. 2019; 117: 267-286. doi:10.1016/j.eswa.2018.09.015
- 35Luo J, Chen H, Zhang Q, Xu Y, Huang H, Zhao X. An improved grasshopper optimization algorithm with application to financial stress prediction. Appl Math Model. 2018; 64: 654-668. doi:10.1016/j.apm.2018.07.044
- 36Chhikara S, Kumar R. MI-LFGOA: multi-Island levy-flight based grasshopper optimization for spatial image steganalysis. Multim Tools Appl. 2020; 79(39–40): 29723-29750. doi:10.1007/s11042-020-09328-0
- 37Zhao R, Ni H, Feng H, Zhu X. A dynamic weight grasshopper optimization algorithm with random jumping. In: S Bhatia, S Tiwari, K Mishra, M Trivedi, eds. Advances in Computer Communication and Computational Sciences (Advances in Intelligent Systems and Computing). Vol 924. Springer; 2019; 401–413.
10.1007/978-981-13-6861-5_35 Google Scholar
- 38Tiwari V, Jain S. Histopathological cells segmentation using exponential grasshopper optimisation algorithm-based fuzzy clustering method. Int J Intell Inf Database Syst. 2020; 13(2–4): 118-138. doi:10.1504/ijiids.2020.109452
10.1504/ijiids.2020.109452 Google Scholar
- 39Ewees AA, Abd Elaziz M, Houssein EH. Improved grasshopper optimization algorithm using opposition-based learning. Expert Syst Appl. 2018; 112: 156-172. doi:10.1016/j.eswa.2018.06.023