Pseudo-Lyapunov methods for Grünwald-Letnikov and initialized fractional systems
Corresponding Author
Javier A. Gallegos
Department of Electrical Engineering, University of Chile, Av. Tupper 2007, Santiago, Chile
Department of Electrical Engineering, Pontificia Universidad Catolica de Chile, Santiago, Av. Vicuña Mackenna 4860, Chile
Correspondence
Javier A. Gallegos, Department of Electrical Engineering, University of Chile, Av. Tupper 2007, Santiago, Chile.
Email: [email protected]
Communicated by: R. Picard
Search for more papers by this authorNorelys Aguila-Camacho
Department of Electricity, Universidad Tecnológica Metropolitana, Av. José Pedro Alessandri 1242, Santiago, Chile
Search for more papers by this authorCorresponding Author
Javier A. Gallegos
Department of Electrical Engineering, University of Chile, Av. Tupper 2007, Santiago, Chile
Department of Electrical Engineering, Pontificia Universidad Catolica de Chile, Santiago, Av. Vicuña Mackenna 4860, Chile
Correspondence
Javier A. Gallegos, Department of Electrical Engineering, University of Chile, Av. Tupper 2007, Santiago, Chile.
Email: [email protected]
Communicated by: R. Picard
Search for more papers by this authorNorelys Aguila-Camacho
Department of Electricity, Universidad Tecnológica Metropolitana, Av. José Pedro Alessandri 1242, Santiago, Chile
Search for more papers by this authorAbstract
This paper presents reduced-order methods to study the stability of initialized or Grünwald-Letnikov fractional nonlinear systems. It is shown that the initialization procedure must be formalized by introducing a class of systems, and the corresponding stability analysis must be established for each element of that class. The main features obtained using this novel approach are (a) the requirements for stability are imposed directly on the equations of the system and involve only finite-dimensional variables; (b) the conclusions are asserted on the variables of interest; (c) the method can be extended in several ways, including multi-order systems. Illustrative examples, including an application in adaptive control, are finally presented to convey the usefulness of our approach.
CONFLICT OF INTEREST
This work does not have any conflicts of interest.
REFERENCES
- 1Pinto CM, Lopes AM, Tenreiro Machado JA. Review of power laws in real life phenomena. Commun Nonlinear Sci Numer Simul. 2012; 17: 3558-3578.
- 2Ye X, Xu C. A fractional order epidemic model and simulation for avian influenza dynamics. Math Meth Appl Sci. 2019; 42(14): 4765-4779.
- 3Diethelm K. The Analysis of Fractional Differential Equations. An Application-Oriented Exposition Using Differential Operators of Caputo Type, Lecture Notes in Mathematics, vol. 2004. Berlin: Springer-Verlag; 2010.
10.1007/978-3-642-14574-2 Google Scholar
- 4Ortigueira M. On the initial conditions in continuous-time fractional linear systems. Signal Process. 2003; 83: 2301-2309.
- 5Sabatier J, Merveillaut M, Malti R, Oustaloup A. How to impose physically coherent initial conditions to a fractional system. Commun Nonlinear Sci Numer Simulat. 2010; 10: 1318-1326.
- 6Lorenzo C, Hartley T, Adams J. Time-varying initialization and corrected Laplace transform of the Caputo derivative. IFAC Proc Vol. 2011; 46(1): 161-166.
10.3182/20130204-3-FR-4032.00189 Google Scholar
- 7Diethelm K, Kitzing K, Picard R, Siegmund S, Trostorff S, Waurick MA. Hilbert space approach to fractional differential equations. J Dyn Differ Equ. 2021; 34: 481-504.
- 8Trigeassou J, Maamri N. Sabatierj, Oustaloup A. State variables and transients of fractional order differential systems. Computers and Math with Appl. 2012; 64: 3117-3140.
- 9Montseny G. Diffusive representation of pseudo-differential time-operators. ESAIM: Proc. 1998; 5: 159-175.
10.1051/proc:1998005 Google Scholar
- 10Hinze M, Schmidt A, Leine R. The direct method of Lyapunov for nonlinear dynamical systems with fractional damping. Nonlinear Dynamics. 2020; 102: 2017-2037.
- 11Hinze M, Schmidt A, Leine R. Lyapunov stability of a fractionally damped oscillator with linear (anti-)damping. Int J Nonlinear Sci Numer Simul. 2020; 21: 425-442.
- 12Tuan H, Trinh H. Stability of fractional-order nonlinear systems by Lyapunov direct method. IET Control Theory A. 2018; 12(17): 2417-2422.
- 13Podlubny I. Fractional Differential Equations. New York: Academic Press; 1999.
- 14Garrappa R, Kaslik E. Popolizio m. Evaluation of fractional integrals and derivatives of elementary functions: overview and tutorial. Mathematics. 2019; 7(5): 407-428.
- 15Gallegos J, Aguila-Camacho N, Duarte-Mermoud MA. Smooth solutions to mixed-order fractional differential systems with applications to stability analysis. J Integral Equ Appl. 2019; 31: 59-84.
- 16Garrappa R, Giusti A, Mainardi F. Variable-order fractional calculus: a change of perspective. Commun Nonlinear Sci Numer Simulat. 2021; 102: 105904.
- 17Yazdani M, Salarieh H. On the existence of periodic solutions in time-invariant fractional order systems. Automatica. 2011; 47(8): 1834-1837.
- 18Du B, Wei Y, Liang S, Wang Y. Estimation of exact initial states of fractional order systems. Nonlinear Dyn. 2016; 86(3): 2061-2070.
- 19Cong N. Tuan H. Generation of nonlocal fractional dynamical systems by fractional differential equations. J Integral Equations Appl. 2017; 29: 585-608.
- 20Khalil H. Nonlinear Systems. Upper saddle river, NJ: Prentice hall; 2002.
- 21Gallegos J, Duarte-Mermoud MA. Boundedness and convergence on fractional order systems. J Comput Appl Math. 2016; 296: 815-826.
- 22Gallegos J, Aguila-Camacho N, Duarte-Mermoud MA. On fractional extensions of Barbalat lemma. Syst Control Lett. 2015; 84: 7-12.
- 23Cong N, Tuan H, Trinh H. On asymptotic properties of solutions to fractional differential equations. J Math Anal Appl. 2020; 484(2): 123759.
- 24Gallegos J, Duarte-Mermoud MA. Robustness and convergence of fractional systems and their applications to adaptive systems. Fract Calc Appl Anal. 2017; 20: 895-913.
- 25Mielke A, Netz R, ZendehroudS.. A rigorous derivation and energetics of a wave equation with fractional damping. J Evol Equ. 2021; 21: 3079-3102.
- 26Valério D, Da Costa J. Ninteger: a non-integer control toolbox for Matlab. In: First IFAC Workshop on Fractional Differentiation and its Applications; 2004; Bordeaux, France.
- 27Hinze M, Schmidt A, Leine R. Numerical solution of fractional-order ordinary differential equations using the reformulated infinite state representation. Fract Calc Appl Anal. 2019; 22: 1321-1350.
- 28Wei Y, Cao J, Chen Y, Wei Y. The proof of Lyapunov asymptotic stability theorems for Caputo fractional order systems. Appl Math Lett. 2022; 129: 107961.
- 29Sun Z, Rantzer A, Li Z, Robertsson A. Distributed adaptive stabilization. Automatica. 2021; 129: 109616.
- 30Tin-Zhu H. Stability criteria for matrices. Automatica. 1998; 34: 637-639.