An adaptive optimized Nyström method for second-order IVPs
Corresponding Author
Mufutau Ajani Rufai
Dipartimento di Matematica, Università Degli Studi di Bari Aldo Moro, Bari, 70125 Italy
Correspondence
Mufutau Ajani Rufai, Dipartimento di Matematica, Università Degli Studi di Bari Aldo Moro, Bari 70125, Italy.
Email: [email protected]
Communicated by: T. Monovasilis
Search for more papers by this authorFrancesca Mazzia
Dipartimento di Informatica, Università Degli Studi di Bari Aldo Moro, Bari, 70125 Italy
Search for more papers by this authorHiginio Ramos
Scientific Computing Group, Universidad de Salamanca, Plaza de la Merced, Salamanca, 37008 Spain
Escuela Politécnica Superior de Zamora, Campus Viriato, Zamora, 49022 Spain
Search for more papers by this authorCorresponding Author
Mufutau Ajani Rufai
Dipartimento di Matematica, Università Degli Studi di Bari Aldo Moro, Bari, 70125 Italy
Correspondence
Mufutau Ajani Rufai, Dipartimento di Matematica, Università Degli Studi di Bari Aldo Moro, Bari 70125, Italy.
Email: [email protected]
Communicated by: T. Monovasilis
Search for more papers by this authorFrancesca Mazzia
Dipartimento di Informatica, Università Degli Studi di Bari Aldo Moro, Bari, 70125 Italy
Search for more papers by this authorHiginio Ramos
Scientific Computing Group, Universidad de Salamanca, Plaza de la Merced, Salamanca, 37008 Spain
Escuela Politécnica Superior de Zamora, Campus Viriato, Zamora, 49022 Spain
Search for more papers by this authorAbstract
This research work deals with the development, analysis, and implementation of an adaptive optimized one-step Nyström method for solving second-order initial value problems of ODEs and time-dependent partial differential equations. The new method is developed through a collocation technique with a new approach for selecting the collocation points. An embedding-like procedure is used to estimate the error of the proposed optimized method. The current approach has been used to compute efficiently approximate solutions to general second-order IVPs. The numerical experiments demonstrate that the introduced error estimation and step-size control strategy presented in this manuscript have produced a good performance compared to some of the other existing numerical methods.
CONFLICT OF INTEREST
This work does not have any conflict of interest.
REFERENCES
- 1Henrici P. Discrete variable methods in ODEs. 1962.
- 2Brugnano L, Trigiante D. Solving Differential Problems by Multistep Initial and Boundary Value Methods: Gorden and Breach Science Publishers; 1998; 280-299.
- 3Simos TE, Tsitouras Ch. A new family of 7 stages, eight-order explicit Numerov-type methods. Math Methods Appl Sci. 2017; 40(18): 7876-7878.
- 4Butcher JC, Hojjati G. Second derivative methods fifth Runge-Kutta stability. Numer Algo. 2005; 40: 415-429.
- 5Mazzia F, Sestini A, Trigiante D. B-Spline linear multistep methods and their continuous extensions. SIAM J Numer Anal. 2006; 44(5): 1954-1973.
- 6Franco J. Runge-Kutta-Nyström methods adapted to the numerical integration of perturbed oscillators. Comput Phys Comm. 2002; 147: 770-787.
- 7Khalsaraei MM, Shokri A. An explicit six-step singularly P-stable Obrechkoff method for the numerical solution of second-order oscillatory initial value problems. Numer Algor. 2020; 84: 871-886.
- 8Mazzia F, Nagy AM. A new mesh selection strategy with stiffness detection for explicit Runge-Kutta methods. J Appl Math Comput. 2015; 255(15): 125-134.
- 9Jator SN, Li J. A self starting linear multistep method for the direct solution of the general second order initial value problems. Int J Comput Math. 2009; 86(5): 817-836.
- 10Berg DB, Simos TE, Tsitouras Ch. Trigonometric fitted, eight-order explicit Numerov-type methods. Math Methods Appl Sci. 2018; 41(5): 1845-1854.
- 11Manni C, Mazzia F, Sestini A, Speleers H. BS2 methods for semi-linear second order boundary value problems. J Appl Math Comput. 2015; 255: 147-156.
- 12You X, Zhang R, Huang T. Symmetric collocation ERKN methods for general second-order oscillators. Calcolo. 2019; 56: 52.
- 13Lambert JD. Numerical Methods for Ordinary Differential Systems. New York: John Wiley; 1991.
- 14Hairer E, Wanner G. Solving ordinary differential equations II, stiff and differential-algebraic problems. Second Revised Edition. Springer-Series Comput Math. 1996; 14: 75-77.
- 15Ramos H, Kalogiratou Z, Monovasilis Th, Simos TE. An optimized two-step hybrid block method for solving general second order initial-value problems. Numer Algo. 2016; 72: 1089-1102.
- 16Rufai MA, Ramos H. A variable step-size fourth derivative hybrid block strategy for integrating third-order IVPs, with applications. Int J Comput Math. 2022; 99(2): 292-308.
- 17Rufai MA, Ramos H. Solving third-order Lane-Emden-Fowler equations using a variable step-size formulation of a pair of block methods. J Comput Appl Math. 2023; 420: 114776.
- 18Ramos H, Rufai MA. Third derivative modification of k-step block Falkner methods for the numerical solution of second order initial-value problems. J Appl Math Comput. 2018; 333: 231-245.
- 19Ramos H, Rufai MA. An adaptive one-point second-derivative Lobatto-type method for solving efficiently differential systems. Int J Comput Math. 2022; 99(8): 1687-1705.
- 20Ramos H, Rufai MA. An adaptive pair of one-step hybrid block Nyström methods for singular initial-value problems of Lane-Emden-Fowler type. Math Comput Simul. 2022; 193: 497-508.
- 21Ramos H, Rufai MA. Two-step hybrid block method with fourth derivatives for solving third-order boundary value problems. J Comput Appl Math. 2022; 404: 113419.
- 22Amodio P, Brugnano L. Parallel implementation of block boundary value methods for ODEs. J Comput Appl Math. 1997; 78(2): 197-211.
- 23Rufai MA. An efficient third-derivative hybrid block method for the solution of second-order BVPs. Mathematics. 2022; 10(19): 3692.
- 24Hairer E, Wanner G. A theory for Nyström methods. Numer Math. 1975; 25(4): 383-400.
- 25Van der Houwen PJ, Sommeijer BP, Nguyen HC. Stability of collocation-based Runge-Kutta-Nyström methods. BIT. 1991; 31: 469-481.
- 26Hairer E, Nørsett SP, Wanner G. Solving Ordinary Differential Equations, I.Nonstiff Problems, second revised edition. Berlin: Springer-Verlag; 1987.
10.1007/978-3-662-12607-3 Google Scholar
- 27Rufai MA, Ramos H. Numerical solution of second-order singular problems arising in astrophysics by combining a pair of one-step hybrid block Nyströ,m methods. Astrophys Space Sci. 2020; 365: 96.
- 28Atkinson K. Elementary Numerical Analysis. 2d edition. New York: Wiley Sons John; 1993.
- 29Shampine LF, Gordon MK. Computer Solutions of Ordinary differential Equations: The Initial Value Problem. Freeman, San Francisco, CA1975.
- 30Iavernaro F, Mazzia F. A fourth order symplectic and conjugate-symplectic extension of the midpoint and trapezoidal methods. Mathematics. 2021; 9(10): 1103.
- 31Mazzia F, Sestini A. On a class of conjugate symplectic Hermite-Obreshkov one-step methods with continuous spline extension. Axioms. 2018; 7(3): 58.
- 32Stoer J, Bulirsch R. Introduction to Numerical Analysis: Springer; 2002.
- 33Vigo-Aguiar J, Ramos H. Variable stepsize implementation of multistep methods for . J Comput Appl Math. 2006; 192: 114-131.
- 34Amodio P, Settanni G. High order finite difference schemes for the solution of second order initial value problems. JAIAM J Numer Anal Ind Appl Math. 2010; 5: 3-16.
- 35Amodio P, Budd CJ, Koch O, Settanni G, Weinmüller EB. Asymptotical computations for a model of flow in satured porous media. Appl Math Comput. 2014; 237: 155-167.
- 36Butcher JC. Numerical Methods for Ordinary Differential Equations: John Wiley and Sons; 2008.
10.1002/9780470753767 Google Scholar
- 37Dormand JR, El-Mikkawy MEA, Prince PJ. Families of Runge-Kutta-Nyström formulae. IMA J Numer Anal. 1987; 7: 235-250.
- 38Mazzia F, Iavernaro F. Test set for initial value problems solvers. Department of Mathematics University of Bari; 2003.
- 39Amodio P, Iavernaro F. Symmetric boundary value methods for second order initial and boundary value problems. MedJM. 2006; 3: 383-398.