On the low Mach number limit of the compressible viscous micropolar fluid model
Corresponding Author
Jianwei Yang
School of Mathematics and Statistics, North China University of Water Resources and Electric Power, Zhengzhou, China
Correspondence
Jianwei Yang, School of Mathematics and Statistics, North China University of Water Resources and Electric Power, Zhengzhou 450045, China.
Email: [email protected]
Communicated by: H. Li
Search for more papers by this authorXiao Yang
School of Mathematics and Statistics, North China University of Water Resources and Electric Power, Zhengzhou, China
Search for more papers by this authorJianqin Yang
School of Mathematics and Information Science, Nanchang Normal University, Nanchang, China
Search for more papers by this authorQihong Shi
Department of Mathematics, Lanzhou University of Technology, Lanzhou, China
Search for more papers by this authorCorresponding Author
Jianwei Yang
School of Mathematics and Statistics, North China University of Water Resources and Electric Power, Zhengzhou, China
Correspondence
Jianwei Yang, School of Mathematics and Statistics, North China University of Water Resources and Electric Power, Zhengzhou 450045, China.
Email: [email protected]
Communicated by: H. Li
Search for more papers by this authorXiao Yang
School of Mathematics and Statistics, North China University of Water Resources and Electric Power, Zhengzhou, China
Search for more papers by this authorJianqin Yang
School of Mathematics and Information Science, Nanchang Normal University, Nanchang, China
Search for more papers by this authorQihong Shi
Department of Mathematics, Lanzhou University of Technology, Lanzhou, China
Search for more papers by this authorAbstract
In this paper, we consider the low Mach number limit problem for the compressible viscous micropolar fluid model based on the concept of dissipative measure-valued solutions. We prove that the dissipative measure-valued solutions of the compressible micropolar fluid model converge to the smooth solution of the incompressible micropolar system in the case of well-prepared initial data when the Mach number tends to zero.
REFERENCES
- 1Danchin R. Zero Mach number limit in critical spaces for compressible Navier–Stokes equations. Ann Sci Éc Norm Supér. 2002; 35: 27-75.
- 2Danchin R. Zero Mach number limit for compressible flows with periodic boundary conditions. Amer J Math. 2002; 124: 1153-1219.
- 3Desjardins B, Grenier E. Low Mach number limit of viscous compressible flows in the whole space. Proc R Soc Lond Ser A Math Phys Eng Sci. 1999; 455: 2271-2279.
- 4Desjardins B, Grenier E, Lions PL, Masmoudi N. Incompressible limit for solutions of the isentropic Navier-Stokes equations with Dirichlet boundary conditions. J Math Pures Appl. 1999; 78: 461-471.
- 5Hsiao L, Ju Q-C, Li F-C. The incompressible limits of compressible Navier-Stokes equations in the whole space with general initial data. Chin Ann Math Ser B. 2009; 30: 17-26.
- 6Lions PL, Masmoudi N. Incompressible limit for a viscous compressible fluid. J Math Pures Appl. 1998; 77: 585-627.
- 7Masmoudi N. Incompressible inviscid limit of the compressible Navier-Stokes system. Ann Inst H Poincaré, Anal Non Linéaire. 2001; 18: 199-224.
- 8Ou Y-B, Ren D-D. Incompressible limit of global strong solutions to 3-D barotropic Navier-Stokes equations with well-prepared initial data and Navier's slip boundary conditions. J Math Anal Appl. 2014; 420: 1316-1336.
- 9Eringen AC. Simple Microfluids. Int J Engng Sci. 1964; 2: 205-217.
10.1016/0020-7225(64)90005-9 Google Scholar
- 10Eringen AC. Theory of micropolar fluids. J Math Mech. 1966; 16: 1-18.
- 11Galdi GP, Rionero S. A Note on the Existence and Uniqueness of Solutions of the Micropolar Fluid Equations. Int J Engng Sci. 1977; 15: 105-108.
- 12Lukaszewicz G. On nonstationary flows of asymmetric fluids. Rend Accad Naz Sci XL Mem Math. 1988; 12: 83-97.
- 13Lukaszewicz G. On the existence, uniqueness and asymptotic properties of solutions of flows of asymmetric Fluids. Rend Accad Naz Sci XL, Mem Math. 1989; 13: 105-120.
- 14Yamaguchi N. Existence of global strong solution to the micropolar fluid system in a bounded domain. Math Methods Appl Sci. 2005; 28: 1507-1526.
- 15Amirat Y, Hamdache K. Weak solutions to the equations of motion for compressible magnetic fluids. J Math Pures Appl. 2009; 91: 433-467.
- 16Drazić I, Mujaković N. 3-D flow of a compressible viscous micropolar fluid with spherical symmetry: large time behavior of the solution. J Math Anal Appl. 2015; 431: 545-568.
- 17Duan R. Global strong solution for initial-boundary value problem of one-dimensional compressible micropolar fluids with density dependent viscosity and temperature dependent heat conductivity. Nonlinear Anal Real World Appl. 2018; 42: 71-92.
- 18Feng Z-F, Zhu C-J. Global classical large solution to compressible viscous micropolar and heat-conducting fluids with vacuum. Discrete Cont Dyn Sys-A. 2019; 39: 3069-3097.
10.3934/dcds.2019127 Google Scholar
- 19Liu Q, Zhang P. Optimal time decay of the compressible micropolar fluids. J Differ Equ. 2016; 260: 7634-7661.
- 20Mujaković N. One-dimensional flow of a compressible viscous micropolar fluid: A global existence theorem. Glasnic Mate. 1998; 33: 199-208.
- 21Su J-R. Incompressible limit of a compressible micropolar fluid model with general initial data. Nonlinear Anal. 2016; 132: 1-24.
- 22Wu Z, Wang W. The pointwise estimates of diffusion wave of the compressible micropolar fluids. J Differ Equ. 2018; 265: 2544-2576.
- 23Feireisl E, Klingenberg C, Markfelder S. On the low Mach number limit for the compressible Euler system. SIAM J Math Anal. 2019; 51: 1496-1513.
- 24Březina J, Feireisl E. Measure-valued solutions to the complete Euler system revisited. Z Angew Math Phys. 2018; 69: 17.
- 25DiPerna RJ. Measure-valued solutions to conservation laws. Arch Ration Mech Anal. 1985; 88: 223-270.
- 26Feireisl E, Gwiazda P, Świerczewska-Gwiazda A, Wiedemann E. Dissipative measure-valued solutions to the compressible Navier-Stokes system. Calc Var Partial Differential Equations. 2016; 55: 141.
- 27Gwiazda P, Świerczewska-Gwiazda A, Wiedemann E. Weak-strong uniqueness for measure-valued solutions of some compressible fluid models. Nonlinearity. 2015; 28: 3873-3890.
- 28Chen M-T, Xu X-Y, Zhang J-W. Global weak solutions of 3D compressible micropolar fluids with discontinuous initial data and vacuum. Commun Math Sci. 2015; 13: 225-247.
- 29Demoulini S, Stuart DMA, Tzavaras AE. Weak-strong uniqueness of dissipative measure-valued solutions for polyconvex elastodynamics. Arch Ration Mech Anal. 2012; 205: 927-961.
- 30Kröner D, Zajaczkowski W. Measure-valued solutions of the Euler equations for ideal compressible polytropic fluids. Math Methods Appl Sci. 1996; 19: 235-252.
- 31Málek J, Necas J, Rokyta M, Ruzica M. Weak and Measure-Valued Solutions to Evolutionary PDEs. London: Chapman and Hall; 1996.
10.1007/978-1-4899-6824-1 Google Scholar
- 32Neustupa J. Measure-valued solutions of the Euler and Navier-Stokes equations for compressible barotropic fluids. Math Nachr. 1993; 163: 217-227.
- 33Huang B-K. On the Existence of Dissipative Measure-Valued Solutions to the Compressible Micropolar System. J Math Fluid Mech. 2020; 22: 59.
- 34Rojas M. Magneto-micropolar fluid motion: Existence and uniqueness of strong solution. Math Nachr. 1997; 188: 301-319.