Preface to a thematic special issue of methods of mathematics and fractional calculus
Corresponding Author
Dia Zeidan
School of Basic Sciences and Humanities, German Jordanian University, Amman, Jordan
Correspondence
Dia Zeidan, School of Basic Sciences and Humanities, German Jordanian University, Amman, Jordan
Email: [email protected]
Search for more papers by this authorR Sheldon Herbst
Department of Mathematics and Applied Mathematics, University of Johannesburg, Johannesburg, South Africa
Search for more papers by this authorTzon-Tzer Lu
Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung, Taiwan
Search for more papers by this authorCorresponding Author
Dia Zeidan
School of Basic Sciences and Humanities, German Jordanian University, Amman, Jordan
Correspondence
Dia Zeidan, School of Basic Sciences and Humanities, German Jordanian University, Amman, Jordan
Email: [email protected]
Search for more papers by this authorR Sheldon Herbst
Department of Mathematics and Applied Mathematics, University of Johannesburg, Johannesburg, South Africa
Search for more papers by this authorTzon-Tzer Lu
Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung, Taiwan
Search for more papers by this author
CONFLICT OF INTEREST
The editors hereby state that they have no conflict of interest, financial, personal contacts, or otherwise that could affect the work presented in this thematic special issue.
REFERENCES
- 1Dassios I, Baleanu D. Optimal solutions for singular linear systems of Caputo fractional differential equations. Math Methods Appl Sci. 2020. https://doi.org/10.1002/mma.5410
- 2Boumenir A, Kim Tuan V. Recovery of a fractional diffusion equation from a single boundary measurement. Math Methods Appl Sci. 2020. https://doi.org/10.1002/mma.5456
- 3Senol M, Tasbozan O, Kurt A. Comparison of two reliable methods to solve fractional Rosenau–Hyman equation. Math Methods Appl Sci. 2020. https://doi.org/10.1002/mma.5497
- 4Abu Arqub O, Shawagfeh N. Solving optimal control problems of Fredholm constraint optimality via the reproducing kernel Hilbert space method with error estimates and convergence analysis. Math Methods Appl Sci. 2020. https://doi.org/10.1002/mma.5530
- 5Su X, Zhao S, Li M. Dispersive estimates for time and space fractional Schrödinger equations. Math Methods Appl Sci. 2020. https://doi.org/10.1002/mma.5550
- 6Pang D, Jiang W, Liu S, Niazi AU. Well-posedness and iterative formula for fractional oscillator equations with delays. Math Methods Appl Sci. 2020. https://doi.org/10.1002/mma.5572
- 7Zureigat H, Ismail AI, Sathasivam S. Numerical solutions of fuzzy time fractional advection-diffusion equations in double parametric form of fuzzy number. Math Methods Appl Sci. 2020. https://doi.org/10.1002/mma.5573
- 8Martínez–jiménez L, Cruz–Duarte JM, Rosales–García JJ. Fractional solution of the catenary curve. Math Methods Appl Sci. 2020. https://doi.org/10.1002/mma.5608
- 9Aimene D, Seba D, Laoubi K. Controllability of impulsive fractional functional evolution equations with infinite state-dependent delay in Banach spaces. Math Methods Appl Sci. 2020. https://doi.org/10.1002/mma.5644
- 10Ezz-Eldien SS. Theoretical and spectral numerical study for fractional Van der Pol equation. Math Methods Appl Sci. 2020. https://doi.org/10.1002/mma.5666
- 11Chinnathambi R, Rihan FA, Alsakaji HJ. A fractional-order model with time delay for tuberculosis with endogenous reactivation and exogenous reinfections. Math Methods Appl Sci. 2020. https://doi.org/10.1002/mma.5676
- 12Almeida R, Malinowska AB, Odzijewicz T. On systems of fractional differential equations with the ψ-Caputo derivative and their applications. Math Methods Appl Sci. 2020. https://doi.org/10.1002/mma.5678
- 13Yarman CE. Approximating fractional derivative of Faddeeva function, Gaussian function, and Dawson's integral. Math Methods Appl Sci. 2020. https://doi.org/10.1002/mma.5679
- 14Ortigueira MD. Two-sided and regularised Riesz–Feller derivatives. Math Methods Appl Sci. 2020. https://doi.org/10.1002/mma.5720
- 15Fernandez A. A complex analysis approach to Atangana–Baleanu fractional calculus. Math Methods Appl Sci. 2020. https://doi.org/10.1002/mma.5754
- 16Bengochea G, Ortigueira M, Verde-Star L. Operational calculus for the solution of fractional differential equations with noncommensurate orders. Math Methods Appl Sci. 2020. https://doi.org/10.1002/mma.5779
- 17Zeidan D, Chau CK, Lu T-T. On the characteristic Adomian decomposition method for the Riemann problem. Math Methods Appl Sci. 2020. https://doi.org/10.1002/mma.5798
- 18Iqbal M, Shah K, Khan RA. On using coupled fixed-point theorems for mild solutions to coupled system of multipoint boundary value problems of nonlinear fractional hybrid pantograph differential equations. Math Methods Appl Sci. 2020. https://doi.org/10.1002/mma.5799
- 19Padhi S, Prasad BSRV, Mahendru D. System of Riemann–Liouville fractional differential equations with nonlocal boundary conditions: existence, uniqueness, and multiplicity of solutions. Math Methods Appl Sci. 2020. https://doi.org/10.1002/mma.5812
- 20Liao B, Zeng C. Local stable manifolds for nonlinear planar fractional differential equations with order 1 < α < 2. Math Methods Appl Sci. 2020. https://doi.org/10.1002/mma.5817
- 21Wang F, Cui Y. Unbounded solutions to abstract boundary value problems of fractional differential equations on a half line. Math Methods Appl Sci. 2020. https://doi.org/10.1002/mma.5819
- 22Tian R, Fu L, Ren Y, Yang H. (3 + 1)-Dimensional time-fractional modified Burgers equation for dust ion-acoustic waves as well as its exact and numerical solutions. Math Methods Appl Sci. 2020. https://doi.org/10.1002/mma.5823
- 23Shah K, Shah L, Ahmad S, Rassias JM, Li Y. Monotone iterative techniques together with Hyers–Ulam–Rassias stability. Math Methods Appl Sci. 2020. https://doi.org/10.1002/mma.5825
- 24Laadjal Z, Ma Q-H. Existence and uniqueness of solutions for nonlinear Volterra–Fredholm integro-differential equation of fractional order with boundary conditions. Math Methods Appl Sci. 2020. https://doi.org/10.1002/mma.5845
- 25Wang J, Shao C, Chen X, Chen YQ. Fractional-order DOB-sliding mode control for a class of noncommensurate fractional-order systems with mismatched disturbances. Math Methods Appl Sci. 2020. https://doi.org/10.1002/mma.5850
- 26Khalid M, Khan FS, Sultana M. A highly accurate numerical method for solving nonlinear time-fractional differential difference equation. Math Methods Appl Sci. 2020. https://doi.org/10.1002/mma.5883
- 27Matar MM, Abu Skhail ES, Alzabut J. On solvability of nonlinear fractional differential systems involving nonlocal initial conditions. Math Methods Appl Sci. 2020. https://doi.org/10.1002/mma.5910
- 28Padhi S, Prasad BSRV, Mahendru D. Systems of Riemann–Liouville fractional differential equations with nonlocal boundary conditions—existence, nonexistence, and multiplicity of solutions: method of fixed point index. Math Methods Appl Sci. 2020. https://doi.org/10.1002/mma.5931
- 29Solís-Pérez JE, Gómez-Aguilar JF, Baleanu D, Tchier F, Ragoub L. Anti-synchronization of chaotic systems using a fractional conformable derivative with power law. Math Methods Appl Sci. 2020. https://doi.org/10.1002/mma.5967
10.1002/mma.5967 Google Scholar
- 30Li C, Li M-M, Sun X. Finite difference/Galerkin finite element methods for a fractional heat conduction-transfer equation. Math Methods Appl Sci. 2020. https://doi.org/10.1002/mma.5984
- 31Al-Omari SK. On a q-Laplace-type integral operator and certain class of series expansion. Math Methods Appl Sci. 2020. https://doi.org/10.1002/mma.6002
- 32Fang J, Sun H, Zhang C. Fractional derivative heat conduction modeling based on thermal elements combination. Math Methods Appl Sci. 2020. https://doi.org/10.1002/mma.6011
- 33Seba D, Habani S, Benaissa A, Rebai H. The Henstock–Kurzweil–Pettis integral and multiorders fractional differential equations with impulses and multipoint fractional integral boundary conditions in Banach spaces. Math Methods Appl Sci. 2020. https://doi.org/10.1002/mma.6020
- 34Jayakumar K. Modified quasi-boundary value method for the multidimensional nonhomogeneous backward time fractional diffusion equation. Math Methods Appl Sci. 2020. https://doi.org/10.1002/mma.6102
- 35Saha Ray S. Similarity Solutions for Keller–Segel model with fractional diffusion of cells. Math Methods Appl Sci. 2020. https://doi.org/10.1002/mma.6122
10.1002/mma.6122 Google Scholar
- 36El Hamidi A, Tfayli A. Identification of the derivative order in fractional differential equations. Math Methods Appl Sci. 2020. https://doi.org/10.1002/mma.6175
10.1002/mma.6175 Google Scholar
- 37Fernandez A, Mohammed P. Hermite–Hadamard inequalities in fractional calculus defined using Mittag–Leffler kernels. Math Methods Appl Sci. 2020. https://doi.org/10.1002/mma.6188
- 38Suwan I, Owies S, Abdeljawad T. Fractional ℎ-differences with exponential kernels and their monotonicity properties. Math Methods Appl Sci. 2020. https://doi.org/10.1002/mma.6213
- 39Ali M, Aziz S. Some inverse problems for time-fractional diffusion equation with nonlocal Samarskii–Ionkin type condition. Math Methods Appl Sci. 2020. https://doi.org/10.1002/mma.6330
- 40Laiadi A, Merzougui A. Numerical solution of a cavity problem under surface tension effect. Math Methods Appl Sci. 2020. https://doi.org/10.1002/mma.6474
- 41Al-Smadi M, Abu Arqub O, Gaith M. Numerical simulation of telegraph and Cattaneo fractional-type models using adaptive reproducing kernel framework. Math Methods Appl Sci. 2020. https://doi.org/10.1002/mma.6998